switch to trie packed liang hyphenation dictionaries

This commit is contained in:
Arthur Tazhitdinov
2026-01-09 20:54:31 +05:00
parent c83fd37286
commit 0b3e029484
21 changed files with 15771 additions and 850 deletions

View File

@@ -78,12 +78,6 @@ bool Epub::parseContentOpf(BookMetadataCache::BookMetadata& bookMetadata) {
bookMetadata.coverItemHref = opfParser.coverItemHref;
bookMetadata.textReferenceHref = opfParser.textReferenceHref;
if (!bookMetadata.language.empty()) {
Serial.printf("[%lu] [EBP] OPF language: %s\n", millis(), bookMetadata.language.c_str());
} else {
Serial.printf("[%lu] [EBP] OPF language: <none>\n", millis());
}
if (!opfParser.tocNcxPath.empty()) {
tocNcxItem = opfParser.tocNcxPath;
}

View File

@@ -188,7 +188,6 @@ bool Section::createSectionFile(const int fontId, const float lineCompression, c
[this, &lut](std::unique_ptr<Page> page) { lut.emplace_back(this->onPageComplete(std::move(page))); },
progressFn);
Hyphenator::setPreferredLanguage(epub->getLanguage());
Serial.printf("[%lu] [SCT] Hyphenation language set to: %s\n", millis(), epub->getLanguage().c_str());
success = visitor.parseAndBuildPages();
SdMan.remove(tmpHtmlPath.c_str());

View File

@@ -1,343 +1,9 @@
#include "EnglishHyphenator.h"
#include <algorithm>
#include <array>
#include <initializer_list>
#include <string>
#include <vector>
#include "HyphenationLiterals.h"
namespace {
char lowerLatinChar(const uint32_t cp) {
if (!isLatinLetter(cp)) {
return 0;
}
return static_cast<char>(toLowerLatin(cp));
}
bool isEnglishApproximantChar(const char c) { return c == 'l' || c == 'r' || c == 'w' || c == 'y'; }
bool isEnglishStopChar(const char c) {
switch (c) {
case 'p':
case 'b':
case 't':
case 'd':
case 'k':
case 'g':
case 'c':
case 'q':
return true;
default:
return false;
}
}
bool isEnglishFricativeChar(const char c) {
switch (c) {
case 'f':
case 'v':
case 's':
case 'z':
case 'h':
case 'x':
return true;
default:
return false;
}
}
using LatinLiteral = HyphenLiteralT<char>;
constexpr std::array<LatinLiteral, 20> ENGLISH_PREFIXES = {
{{"anti", 4}, {"auto", 4}, {"counter", 7}, {"de", 2}, {"dis", 3}, {"hyper", 5}, {"inter", 5},
{"micro", 5}, {"mis", 3}, {"mono", 4}, {"multi", 5}, {"non", 3}, {"over", 4}, {"post", 4},
{"pre", 3}, {"pro", 3}, {"re", 2}, {"sub", 3}, {"super", 5}, {"trans", 5}}};
constexpr std::array<LatinLiteral, 24> ENGLISH_SUFFIXES = {
{{"able", 4}, {"ible", 4}, {"ing", 3}, {"ings", 4}, {"ed", 2}, {"er", 2}, {"ers", 3}, {"est", 3},
{"ful", 3}, {"hood", 4}, {"less", 4}, {"lessly", 6}, {"ly", 2}, {"ment", 4}, {"ments", 5}, {"ness", 4},
{"ous", 3}, {"tion", 4}, {"sion", 4}, {"ward", 4}, {"wards", 5}, {"ship", 4}, {"ships", 5}, {"y", 1}}};
bool nextToApostrophe(const std::vector<CodepointInfo>& cps, size_t index);
std::string lowercaseLatinWord(const std::vector<CodepointInfo>& cps) {
std::string lower;
lower.reserve(cps.size());
for (const auto& info : cps) {
lower.push_back(lowerLatinChar(info.value));
}
return lower;
}
bool englishSegmentHasVowel(const std::vector<CodepointInfo>& cps, const size_t start, const size_t end) {
if (start >= end || start >= cps.size()) {
return false;
}
const size_t clampedEnd = std::min(end, cps.size());
for (size_t i = start; i < clampedEnd; ++i) {
if (isLatinVowel(cps[i].value)) {
return true;
}
}
return false;
}
bool englishBreakAllowed(const std::vector<CodepointInfo>& cps, const size_t breakIndex) {
if (breakIndex == 0 || breakIndex >= cps.size()) {
return false;
}
const size_t prefixLen = breakIndex;
const size_t suffixLen = cps.size() - breakIndex;
if (prefixLen < MIN_PREFIX_CP || suffixLen < MIN_SUFFIX_CP) {
return false;
}
if (!englishSegmentHasVowel(cps, 0, breakIndex) || !englishSegmentHasVowel(cps, breakIndex, cps.size())) {
return false;
}
if (nextToApostrophe(cps, breakIndex)) {
return false;
}
return true;
}
void appendMorphologyBreaks(const std::vector<CodepointInfo>& cps, const std::string& lowerWord,
std::vector<size_t>& indexes) {
appendLiteralBreaks(
lowerWord, ENGLISH_PREFIXES, ENGLISH_SUFFIXES,
[&](const size_t breakIndex) { return englishBreakAllowed(cps, breakIndex); }, indexes);
}
struct CharPair {
char first;
char second;
};
bool matchesDigraph(const char first, const char second, const std::initializer_list<CharPair>& pairs) {
for (const auto& pair : pairs) {
if (pair.first == first && pair.second == second) {
return true;
}
}
return false;
}
bool isEnglishDiphthong(const uint32_t first, const uint32_t second) {
if (!isLatinLetter(first) || !isLatinLetter(second)) {
return false;
}
const auto f = static_cast<char>(toLowerLatin(first));
const auto s = static_cast<char>(toLowerLatin(second));
switch (f) {
case 'a':
return s == 'i' || s == 'y' || s == 'u';
case 'e':
return s == 'a' || s == 'e' || s == 'i' || s == 'o' || s == 'u' || s == 'y';
case 'i':
return s == 'e' || s == 'u' || s == 'a';
case 'o':
return s == 'a' || s == 'e' || s == 'i' || s == 'o' || s == 'u' || s == 'y';
case 'u':
return s == 'i' || s == 'a' || s == 'e';
}
return false;
}
bool isValidEnglishOnsetBigram(const uint32_t firstCp, const uint32_t secondCp) {
const char first = lowerLatinChar(firstCp);
const char second = lowerLatinChar(secondCp);
if (!first || !second) {
return false;
}
if (matchesDigraph(first, second,
{{'c', 'h'},
{'s', 'h'},
{'t', 'h'},
{'p', 'h'},
{'w', 'h'},
{'w', 'r'},
{'k', 'n'},
{'g', 'n'},
{'p', 's'},
{'p', 't'},
{'p', 'n'},
{'r', 'h'}})) {
return true;
}
if (isEnglishStopChar(first) && isEnglishApproximantChar(second)) {
return true;
}
if (isEnglishFricativeChar(first) && isEnglishApproximantChar(second)) {
return true;
}
if (first == 's' && (second == 'p' || second == 't' || second == 'k' || second == 'm' || second == 'n' ||
second == 'f' || second == 'l' || second == 'w' || second == 'c')) {
return true;
}
if (second == 'y' && (first == 'p' || first == 'b' || first == 't' || first == 'd' || first == 'f' || first == 'k' ||
first == 'g' || first == 'h' || first == 'm' || first == 'n' || first == 'l' || first == 's')) {
return true;
}
return false;
}
bool isValidEnglishOnsetTrigram(const uint32_t firstCp, const uint32_t secondCp, const uint32_t thirdCp) {
const char first = lowerLatinChar(firstCp);
const char second = lowerLatinChar(secondCp);
const char third = lowerLatinChar(thirdCp);
if (!first || !second || !third) {
return false;
}
if (first == 's') {
if (second == 'p' && (third == 'l' || third == 'r' || third == 'w')) {
return true;
}
if (second == 't' && (third == 'r' || third == 'w' || third == 'y')) {
return true;
}
if (second == 'k' && (third == 'l' || third == 'r' || third == 'w')) {
return true;
}
if (second == 'c' && (third == 'l' || third == 'r')) {
return true;
}
if (second == 'f' && third == 'r') {
return true;
}
if (second == 'h' && third == 'r') {
return true;
}
}
if (first == 't' && second == 'h' && third == 'r') {
return true;
}
return false;
}
// Verifies that the consonant cluster could begin an English syllable.
bool englishClusterIsValidOnset(const std::vector<CodepointInfo>& cps, const size_t start, const size_t end) {
if (start >= end) {
return false;
}
for (size_t i = start; i < end; ++i) {
const char ch = lowerLatinChar(cps[i].value);
if (!ch) {
return false;
}
if (!isLatinConsonant(cps[i].value) && ch != 'y') {
return false;
}
}
const size_t len = end - start;
if (len == 1) {
return true;
}
if (len == 2) {
return isValidEnglishOnsetBigram(cps[start].value, cps[start + 1].value);
}
if (len == 3) {
return isValidEnglishOnsetTrigram(cps[start].value, cps[start + 1].value, cps[start + 2].value);
}
return false;
}
// Picks the longest legal onset inside the consonant cluster between vowels.
size_t englishOnsetLength(const std::vector<CodepointInfo>& cps, const size_t clusterStart, const size_t clusterEnd) {
const size_t clusterLen = clusterEnd - clusterStart;
if (clusterLen == 0) {
return 0;
}
const size_t maxLen = std::min<size_t>(3, clusterLen);
for (size_t len = maxLen; len >= 1; --len) {
const size_t suffixStart = clusterEnd - len;
if (englishClusterIsValidOnset(cps, suffixStart, clusterEnd)) {
return len;
}
}
return 1;
}
// Avoids creating hyphen positions adjacent to apostrophes (e.g., contractions).
bool nextToApostrophe(const std::vector<CodepointInfo>& cps, const size_t index) {
if (index == 0 || index >= cps.size()) {
return false;
}
const auto left = cps[index - 1].value;
const auto right = cps[index].value;
return left == '\'' || right == '\'';
}
// Returns byte indexes where the word may break according to English syllable rules.
std::vector<size_t> englishBreakIndexes(const std::vector<CodepointInfo>& cps) {
std::vector<size_t> indexes;
const size_t wordSize = cps.size();
std::vector<size_t> vowelPositions;
vowelPositions.reserve(wordSize / 2);
for (size_t i = 0; i < wordSize; ++i) {
if (isLatinVowel(cps[i].value)) {
vowelPositions.push_back(i);
}
}
if (vowelPositions.size() < 2) {
return indexes;
}
for (size_t v = 0; v + 1 < vowelPositions.size(); ++v) {
const size_t leftVowel = vowelPositions[v];
const size_t rightVowel = vowelPositions[v + 1];
if (rightVowel - leftVowel == 1) {
if (!isEnglishDiphthong(cps[leftVowel].value, cps[rightVowel].value) && englishBreakAllowed(cps, rightVowel)) {
indexes.push_back(rightVowel);
}
continue;
}
const size_t clusterStart = leftVowel + 1;
const size_t clusterEnd = rightVowel;
const size_t onsetLen = englishOnsetLength(cps, clusterStart, clusterEnd);
const size_t breakIndex = clusterEnd - onsetLen;
if (!englishBreakAllowed(cps, breakIndex)) {
continue;
}
indexes.push_back(breakIndex);
}
const auto lowerWord = lowercaseLatinWord(cps);
const size_t preDedupeCount = indexes.size();
appendMorphologyBreaks(cps, lowerWord, indexes);
if (indexes.size() > preDedupeCount) {
std::sort(indexes.begin(), indexes.end());
indexes.erase(std::unique(indexes.begin(), indexes.end()), indexes.end());
}
return indexes;
}
} // namespace
#include "LiangHyphenation.h"
#include "generated/hyph-en-us.trie.h"
const EnglishHyphenator& EnglishHyphenator::instance() {
static EnglishHyphenator instance;
@@ -345,5 +11,8 @@ const EnglishHyphenator& EnglishHyphenator::instance() {
}
std::vector<size_t> EnglishHyphenator::breakIndexes(const std::vector<CodepointInfo>& cps) const {
return englishBreakIndexes(cps);
// The shared Liang engine needs to know which letters are valid, how to lowercase them, and what
// TeX-style prefix/suffix minima to respect (currently set to lefthyphenmin=2 and righthyphenmin=2)
const LiangWordConfig config(isLatinLetter, toLowerLatin, minPrefix(), minSuffix());
return liangBreakIndexes(cps, en_us_patterns, config);
}

View File

@@ -8,6 +8,9 @@ class EnglishHyphenator final : public LanguageHyphenator {
static const EnglishHyphenator& instance();
std::vector<size_t> breakIndexes(const std::vector<CodepointInfo>& cps) const override;
// Keep both minima at two characters to mirror Pyphen defaults.
size_t minPrefix() const override { return 2; }
size_t minSuffix() const override { return 2; }
private:
EnglishHyphenator() = default;

View File

@@ -0,0 +1,14 @@
#include "GermanHyphenator.h"
#include "LiangHyphenation.h"
#include "generated/hyph-de.trie.h"
const GermanHyphenator& GermanHyphenator::instance() {
static GermanHyphenator instance;
return instance;
}
std::vector<size_t> GermanHyphenator::breakIndexes(const std::vector<CodepointInfo>& cps) const {
const LiangWordConfig config(isLatinLetter, toLowerLatin, minPrefix(), minSuffix());
return liangBreakIndexes(cps, de_patterns, config);
}

View File

@@ -0,0 +1,14 @@
#pragma once
#include "LanguageHyphenator.h"
// Implements Liang hyphenation rules for German (Latin script).
class GermanHyphenator final : public LanguageHyphenator {
public:
static const GermanHyphenator& instance();
std::vector<size_t> breakIndexes(const std::vector<CodepointInfo>& cps) const override;
private:
GermanHyphenator() = default;
};

View File

@@ -2,6 +2,7 @@
namespace {
// Convert Latin uppercase letters (A-Z) to lowercase (a-z)
uint32_t toLowerLatinImpl(const uint32_t cp) {
if (cp >= 'A' && cp <= 'Z') {
return cp - 'A' + 'a';
@@ -9,6 +10,9 @@ uint32_t toLowerLatinImpl(const uint32_t cp) {
return cp;
}
// Convert Cyrillic uppercase letters to lowercase
// Cyrillic uppercase range 0x0410-0x042F maps to lowercase by adding 0x20
// Special case: Cyrillic capital IO (0x0401) maps to lowercase io (0x0451)
uint32_t toLowerCyrillicImpl(const uint32_t cp) {
if (cp >= 0x0410 && cp <= 0x042F) {
return cp + 0x20;
@@ -27,36 +31,8 @@ uint32_t toLowerCyrillic(const uint32_t cp) { return toLowerCyrillicImpl(cp); }
bool isLatinLetter(const uint32_t cp) { return (cp >= 'A' && cp <= 'Z') || (cp >= 'a' && cp <= 'z'); }
bool isLatinVowel(uint32_t cp) {
cp = toLowerLatinImpl(cp);
return cp == 'a' || cp == 'e' || cp == 'i' || cp == 'o' || cp == 'u' || cp == 'y';
}
bool isLatinConsonant(const uint32_t cp) { return isLatinLetter(cp) && !isLatinVowel(cp); }
bool isCyrillicLetter(const uint32_t cp) { return (cp >= 0x0400 && cp <= 0x052F); }
bool isCyrillicVowel(uint32_t cp) {
cp = toLowerCyrillicImpl(cp);
switch (cp) {
case 0x0430: // а
case 0x0435: // е
case 0x0451: // ё
case 0x0438: // и
case 0x043E: // о
case 0x0443: // у
case 0x044B: // ы
case 0x044D: // э
case 0x044E: // ю
case 0x044F: // я
return true;
default:
return false;
}
}
bool isCyrillicConsonant(const uint32_t cp) { return isCyrillicLetter(cp) && !isCyrillicVowel(cp); }
bool isAlphabetic(const uint32_t cp) { return isLatinLetter(cp) || isCyrillicLetter(cp); }
bool isPunctuation(const uint32_t cp) {

View File

@@ -9,20 +9,11 @@ struct CodepointInfo {
size_t byteOffset;
};
// Minimum number of codepoints required in prefix and suffix for hyphenation.
constexpr size_t MIN_PREFIX_CP = 2;
constexpr size_t MIN_SUFFIX_CP = 2;
uint32_t toLowerLatin(uint32_t cp);
uint32_t toLowerCyrillic(uint32_t cp);
bool isLatinLetter(uint32_t cp);
bool isLatinVowel(uint32_t cp);
bool isLatinConsonant(uint32_t cp);
bool isCyrillicLetter(uint32_t cp);
bool isCyrillicVowel(uint32_t cp);
bool isCyrillicConsonant(uint32_t cp);
bool isAlphabetic(uint32_t cp);
bool isPunctuation(uint32_t cp);

View File

@@ -1,63 +0,0 @@
#pragma once
#include <cstddef>
#include <vector>
template <typename T>
struct HyphenLiteral {
const T* data;
size_t length;
};
template <typename T>
using HyphenLiteralT = HyphenLiteral<T>;
template <typename WordContainer, typename Literal>
bool matchesLiteralAt(const WordContainer& word, const size_t start, const Literal& literal) {
if (!literal.data || literal.length == 0) {
return false;
}
if (start + literal.length > word.size()) {
return false;
}
for (size_t i = 0; i < literal.length; ++i) {
if (word[start + i] != literal.data[i]) {
return false;
}
}
return true;
}
template <typename WordContainer, typename PrefixContainer, typename SuffixContainer, typename BreakAllowedFn>
void appendLiteralBreaks(const WordContainer& lowerWord, const PrefixContainer& prefixes,
const SuffixContainer& suffixes, BreakAllowedFn&& breakAllowed, std::vector<size_t>& indexes) {
const size_t length = lowerWord.size();
const auto tryPush = [&](const size_t breakIndex) {
if (!breakAllowed(breakIndex)) {
return;
}
indexes.push_back(breakIndex);
};
for (const auto& literal : prefixes) {
if (literal.length == 0 || literal.length >= length) {
continue;
}
if (!matchesLiteralAt(lowerWord, 0, literal)) {
continue;
}
tryPush(literal.length);
}
for (const auto& literal : suffixes) {
if (literal.length == 0 || literal.length >= length) {
continue;
}
const size_t breakIndex = length - literal.length;
if (!matchesLiteralAt(lowerWord, breakIndex, literal)) {
continue;
}
tryPush(breakIndex);
}
}

View File

@@ -6,6 +6,7 @@
#include <vector>
#include "EnglishHyphenator.h"
#include "GermanHyphenator.h"
#include "HyphenationCommon.h"
#include "LanguageHyphenator.h"
#include "RussianHyphenator.h"
@@ -27,6 +28,7 @@ const LanguageHyphenator* hyphenatorForLanguage(const std::string& langTag) {
if (primary.empty()) return nullptr;
if (primary == "en") return &EnglishHyphenator::instance();
if (primary == "de") return &GermanHyphenator::instance();
if (primary == "ru") return &RussianHyphenator::instance();
return nullptr;
}
@@ -78,8 +80,8 @@ void trimTrailingFootnoteReference(std::vector<CodepointInfo>& cps) {
}
// Asks the language hyphenator for legal break positions inside the word.
std::vector<size_t> collectBreakIndexes(const std::vector<CodepointInfo>& cps) {
if (const auto* hyphenator = cachedHyphenator()) {
std::vector<size_t> collectBreakIndexes(const std::vector<CodepointInfo>& cps, const LanguageHyphenator* hyphenator) {
if (hyphenator) {
return hyphenator->breakIndexes(cps);
}
return {};
@@ -140,7 +142,10 @@ std::vector<Hyphenator::BreakInfo> Hyphenator::breakOffsets(const std::string& w
auto cps = collectCodepoints(word);
trimSurroundingPunctuation(cps);
trimTrailingFootnoteReference(cps);
if (cps.size() < MIN_PREFIX_CP + MIN_SUFFIX_CP) {
const auto* hyphenator = cachedHyphenator();
const size_t minPrefix = hyphenator ? hyphenator->minPrefix() : LanguageHyphenator::kDefaultMinPrefix;
const size_t minSuffix = hyphenator ? hyphenator->minSuffix() : LanguageHyphenator::kDefaultMinSuffix;
if (cps.size() < minPrefix + minSuffix) {
return {};
}
@@ -151,11 +156,11 @@ std::vector<Hyphenator::BreakInfo> Hyphenator::breakOffsets(const std::string& w
}
// Ask language hyphenator for legal break points.
std::vector<size_t> indexes = hasOnlyAlphabetic(cps) ? collectBreakIndexes(cps) : std::vector<size_t>();
std::vector<size_t> indexes = hasOnlyAlphabetic(cps) ? collectBreakIndexes(cps, hyphenator) : std::vector<size_t>();
// Only add fallback breaks if needed and deduplicate if both language and fallback breaks exist.
if (includeFallback) {
for (size_t idx = MIN_PREFIX_CP; idx + MIN_SUFFIX_CP <= cps.size(); ++idx) {
for (size_t idx = minPrefix; idx + minSuffix <= cps.size(); ++idx) {
indexes.push_back(idx);
}
// Only deduplicate if we have both language-specific and fallback breaks.

View File

@@ -1,11 +1,17 @@
#pragma once
#include <cstddef>
#include <vector>
#include "HyphenationCommon.h"
class LanguageHyphenator {
public:
static constexpr size_t kDefaultMinPrefix = 2;
static constexpr size_t kDefaultMinSuffix = 2;
virtual ~LanguageHyphenator() = default;
virtual std::vector<size_t> breakIndexes(const std::vector<CodepointInfo>& cps) const = 0;
virtual size_t minPrefix() const { return kDefaultMinPrefix; }
virtual size_t minSuffix() const { return kDefaultMinSuffix; }
};

View File

@@ -0,0 +1,360 @@
#include "LiangHyphenation.h"
#include <algorithm>
#include <limits>
#include <vector>
namespace {
// Holds the dotted, lower-case representation used by Liang along with the original character order
// so we can traverse via Unicode scalars instead of raw UTF-8 bytes.
struct AugmentedWord {
std::vector<uint32_t> chars;
bool empty() const { return chars.empty(); }
size_t charCount() const { return chars.size(); }
};
// Adds a single character to the augmented word.
void appendCharToAugmentedWord(uint32_t cp, AugmentedWord& word) { word.chars.push_back(cp); }
// Produces the dotted ('.' + lowercase word + '.') UTF-8 byte stream required by Liang. Classic TeX
// hyphenation logic prepends/appends '.' sentinels so that patterns like ".ab" may anchor to word
// boundaries. If any character in the candidate word fails the `isLetter` predicate we abort early
// and return an empty structure, signaling the caller to skip hyphenation entirely.
AugmentedWord buildAugmentedWord(const std::vector<CodepointInfo>& cps, const LiangWordConfig& config) {
AugmentedWord word;
if (cps.empty()) {
return word;
}
word.chars.reserve(cps.size() + 2);
appendCharToAugmentedWord('.', word);
for (const auto& info : cps) {
if (!config.isLetter(info.value)) {
word.chars.clear();
return word;
}
appendCharToAugmentedWord(config.toLower(info.value), word);
}
appendCharToAugmentedWord('.', word);
return word;
}
// Compact header that prefixes every serialized trie blob and lets us locate
// the individual sections without storing pointers in flash.
struct SerializedTrieHeader {
uint32_t letterCount;
uint32_t nodeCount;
uint32_t edgeCount;
uint32_t valueBytes;
};
constexpr size_t kNodeRecordSize = 7;
constexpr uint32_t kNoValueOffset = 0x00FFFFFFu;
// Lightweight view over the packed blob emitted by the generator script.
struct SerializedTrieView {
const uint32_t* letters = nullptr;
const uint8_t* nodes = nullptr;
const uint8_t* edgeChildren = nullptr;
const uint8_t* edgeLetters = nullptr;
const uint8_t* values = nullptr;
uint32_t letterCount = 0;
uint32_t nodeCount = 0;
uint32_t edgeCount = 0;
uint32_t valueBytes = 0;
size_t edgeLetterBytes = 0;
static constexpr size_t kInvalidNodeIndex = std::numeric_limits<size_t>::max();
static constexpr uint32_t kInvalidLetterIndex = std::numeric_limits<uint32_t>::max();
};
// Splits the raw byte array into typed slices. We purposely keep this logic
// very defensive: any malformed blob results in an empty view so the caller can
// bail out quietly.
SerializedTrieView parseSerializedTrie(const SerializedHyphenationPatterns& patterns) {
SerializedTrieView view;
if (!patterns.data || patterns.size < sizeof(SerializedTrieHeader)) {
return view;
}
const auto* header = reinterpret_cast<const SerializedTrieHeader*>(patterns.data);
const uint8_t* cursor = patterns.data + sizeof(SerializedTrieHeader);
const uint8_t* end = patterns.data + patterns.size;
const auto requireBytes = [&](size_t bytes) {
return bytes <= static_cast<size_t>(end - cursor);
};
const size_t lettersBytes = static_cast<size_t>(header->letterCount) * sizeof(uint32_t);
if (!requireBytes(lettersBytes)) {
return SerializedTrieView{};
}
view.letters = reinterpret_cast<const uint32_t*>(cursor);
cursor += lettersBytes;
const size_t nodesBytes = static_cast<size_t>(header->nodeCount) * kNodeRecordSize;
if (!requireBytes(nodesBytes)) {
return SerializedTrieView{};
}
view.nodes = cursor;
cursor += nodesBytes;
const size_t childBytes = static_cast<size_t>(header->edgeCount) * sizeof(uint16_t);
if (!requireBytes(childBytes)) {
return SerializedTrieView{};
}
view.edgeChildren = cursor;
cursor += childBytes;
const size_t letterBits = static_cast<size_t>(header->edgeCount) * 6;
const size_t letterBytes = (letterBits + 7) >> 3;
if (!requireBytes(letterBytes)) {
return SerializedTrieView{};
}
view.edgeLetters = cursor;
view.edgeLetterBytes = letterBytes;
cursor += letterBytes;
if (!requireBytes(header->valueBytes)) {
return SerializedTrieView{};
}
view.values = cursor;
view.valueBytes = header->valueBytes;
view.letterCount = header->letterCount;
view.nodeCount = header->nodeCount;
view.edgeCount = header->edgeCount;
return view;
}
// The serialized blobs live in PROGMEM, so parsing them repeatedly is cheap but
// wasteful. Keep a tiny cache indexed by the descriptor address so every
// language builds its view only once.
const SerializedTrieView& getSerializedTrie(const SerializedHyphenationPatterns& patterns) {
struct CacheEntry {
const SerializedHyphenationPatterns* key;
SerializedTrieView view;
};
static std::vector<CacheEntry> cache;
for (const auto& entry : cache) {
if (entry.key == &patterns) {
return entry.view;
}
}
cache.push_back({&patterns, parseSerializedTrie(patterns)});
return cache.back().view;
}
uint16_t readUint16LE(const uint8_t* ptr) {
return static_cast<uint16_t>(ptr[0]) | static_cast<uint16_t>(static_cast<uint16_t>(ptr[1]) << 8);
}
uint32_t readUint24LE(const uint8_t* ptr) {
return static_cast<uint32_t>(ptr[0]) | (static_cast<uint32_t>(ptr[1]) << 8) |
(static_cast<uint32_t>(ptr[2]) << 16);
}
// Edges store child indexes and letter indexes in separate, compact arrays. We
// read the child from the 16-bit table and decode the 6-bit letter from the
// bitstream, which packs two entries per 12 bits on average.
uint8_t readEdgeLetterIndex(const SerializedTrieView& trie, const size_t edgeIndex) {
if (!trie.edgeLetters) {
return 0xFFu;
}
const size_t bitOffset = edgeIndex * 6;
const size_t byteOffset = bitOffset >> 3;
if (byteOffset >= trie.edgeLetterBytes) {
return 0xFFu;
}
const uint8_t bitShift = static_cast<uint8_t>(bitOffset & 0x07u);
uint32_t chunk = trie.edgeLetters[byteOffset];
if (byteOffset + 1 < trie.edgeLetterBytes) {
chunk |= static_cast<uint32_t>(trie.edgeLetters[byteOffset + 1]) << 8;
}
const uint8_t value = static_cast<uint8_t>((chunk >> bitShift) & 0x3Fu);
return value;
}
// Materialized view of a node record so call sites do not repeatedly poke into
// the byte array.
struct NodeFields {
uint16_t firstEdge;
uint8_t childCount;
uint32_t valueOffset;
uint8_t valueLength;
};
NodeFields loadNode(const SerializedTrieView& trie, const size_t nodeIndex) {
NodeFields fields{0, 0, kNoValueOffset, 0};
if (!trie.nodes || nodeIndex >= trie.nodeCount) {
return fields;
}
const uint8_t* entry = trie.nodes + nodeIndex * kNodeRecordSize;
fields.firstEdge = readUint16LE(entry);
fields.childCount = entry[2];
fields.valueOffset = readUint24LE(entry + 3);
fields.valueLength = entry[6];
return fields;
}
// Letter indexes are stored sorted, so a lower_bound gives us O(log n) lookups
// without building auxiliary maps.
uint32_t letterIndexForCodepoint(const SerializedTrieView& trie, const uint32_t cp) {
if (!trie.letters || trie.letterCount == 0) {
return SerializedTrieView::kInvalidLetterIndex;
}
const uint32_t* begin = trie.letters;
const uint32_t* end = begin + trie.letterCount;
const auto it = std::lower_bound(begin, end, cp);
if (it == end || *it != cp) {
return SerializedTrieView::kInvalidLetterIndex;
}
return static_cast<uint32_t>(it - begin);
}
// Walks the child edge slice described by the node record using binary search
// on the inlined letter indexes. Returns kInvalidNodeIndex when the path ends.
size_t findChild(const SerializedTrieView& trie, const size_t nodeIndex, const uint32_t letter) {
const uint32_t letterIndex = letterIndexForCodepoint(trie, letter);
if (letterIndex == SerializedTrieView::kInvalidLetterIndex) {
return SerializedTrieView::kInvalidNodeIndex;
}
if (!trie.edgeChildren || !trie.edgeLetters) {
return SerializedTrieView::kInvalidNodeIndex;
}
const NodeFields node = loadNode(trie, nodeIndex);
size_t low = 0;
size_t high = node.childCount;
while (low < high) {
const size_t mid = low + ((high - low) >> 1);
const size_t edgeIndex = static_cast<size_t>(node.firstEdge) + mid;
if (edgeIndex >= trie.edgeCount) {
return SerializedTrieView::kInvalidNodeIndex;
}
const uint32_t entryLetterIndex = readEdgeLetterIndex(trie, edgeIndex);
if (entryLetterIndex == letterIndex) {
const uint8_t* childPtr = trie.edgeChildren + edgeIndex * sizeof(uint16_t);
return readUint16LE(childPtr);
}
if (entryLetterIndex < letterIndex) {
low = mid + 1;
} else {
high = mid;
}
}
return SerializedTrieView::kInvalidNodeIndex;
}
// Merges the pattern's numeric priorities into the global score array (max per slot).
void applyPatternValues(const SerializedTrieView& trie, const NodeFields& node,
const size_t startCharIndex, std::vector<uint8_t>& scores) {
if (node.valueLength == 0 || node.valueOffset == kNoValueOffset || !trie.values ||
node.valueOffset >= trie.valueBytes) {
return;
}
const size_t availableBytes = trie.valueBytes - node.valueOffset;
const size_t packedBytesNeeded = (static_cast<size_t>(node.valueLength) + 1) >> 1;
const size_t packedBytes = std::min<size_t>(packedBytesNeeded, availableBytes);
const uint8_t* packedValues = trie.values + node.valueOffset;
// Value digits remain nibble-encoded (two per byte) to keep flash usage low;
// expand back to single scores just before applying them.
for (size_t valueIdx = 0; valueIdx < node.valueLength; ++valueIdx) {
const size_t packedIndex = valueIdx >> 1;
if (packedIndex >= packedBytes) {
break;
}
const uint8_t packedByte = packedValues[packedIndex];
const uint8_t value = (valueIdx & 1u) ? static_cast<uint8_t>((packedByte >> 4) & 0x0Fu)
: static_cast<uint8_t>(packedByte & 0x0Fu);
const size_t scoreIdx = startCharIndex + valueIdx;
if (scoreIdx >= scores.size()) {
break;
}
scores[scoreIdx] = std::max(scores[scoreIdx], value);
}
}
// Converts odd score positions back into codepoint indexes, honoring min prefix/suffix constraints.
// By iterating over codepoint indexes rather than raw byte offsets we naturally support UTF-8 input
// without bookkeeping gymnastics. Each break corresponds to scores[breakIndex + 1] because of the
// leading '.' sentinel emitted in buildAugmentedWord().
std::vector<size_t> collectBreakIndexes(const std::vector<CodepointInfo>& cps, const std::vector<uint8_t>& scores,
const size_t minPrefix, const size_t minSuffix) {
std::vector<size_t> indexes;
const size_t cpCount = cps.size();
if (cpCount < 2) {
return indexes;
}
for (size_t breakIndex = 1; breakIndex < cpCount; ++breakIndex) {
if (breakIndex < minPrefix) {
continue;
}
const size_t suffixCount = cpCount - breakIndex;
if (suffixCount < minSuffix) {
continue;
}
const size_t scoreIdx = breakIndex + 1; // Account for leading '.' sentinel.
if (scoreIdx >= scores.size()) {
break;
}
if ((scores[scoreIdx] & 1u) == 0) {
continue;
}
indexes.push_back(breakIndex);
}
return indexes;
}
} // namespace
std::vector<size_t> liangBreakIndexes(const std::vector<CodepointInfo>& cps,
const SerializedHyphenationPatterns& patterns,
const LiangWordConfig& config) {
// Step 1: convert the input word into the dotted UTF-8 stream the Liang algorithm expects. A return
// value of {} means the word contained something outside the language's alphabet and should be left
// untouched by hyphenation.
const auto augmented = buildAugmentedWord(cps, config);
if (augmented.empty()) {
return {};
}
// Step 2: run the augmented word through the trie-backed pattern table so we reuse common prefixes
// instead of rescanning the UTF-8 bytes for every substring.
const SerializedTrieView& trie = getSerializedTrie(patterns);
if (!trie.nodes || trie.nodeCount == 0) {
return {};
}
const size_t charCount = augmented.charCount();
std::vector<uint8_t> scores(charCount + 1, 0);
for (size_t charStart = 0; charStart < charCount; ++charStart) {
size_t currentNode = 0; // Root node.
for (size_t cursor = charStart; cursor < charCount; ++cursor) {
const uint32_t letter = augmented.chars[cursor];
currentNode = findChild(trie, currentNode, letter);
if (currentNode == SerializedTrieView::kInvalidNodeIndex) {
break;
}
const NodeFields node = loadNode(trie, currentNode);
if (node.valueLength > 0 && node.valueOffset != kNoValueOffset) {
applyPatternValues(trie, node, charStart, scores);
}
}
}
// Step 3: translate odd-numbered score positions back into codepoint indexes, enforcing per-language
// prefix/suffix minima so we do not produce visually awkward fragments.
return collectBreakIndexes(cps, scores, config.minPrefix, config.minSuffix);
}

View File

@@ -0,0 +1,39 @@
#pragma once
#include <cstddef>
#include <cstdint>
#include <vector>
#include "HyphenationCommon.h"
#include "SerializedHyphenationTrie.h"
// Encapsulates every language-specific dial the Liang algorithm needs at runtime. The helpers are
// intentionally represented as bare function pointers because we invoke them inside tight loops and
// want to avoid the overhead of std::function or functors. The minima default to the TeX-recommended
// "2/2" split but individual languages (English, for example) can override them.
struct LiangWordConfig {
static constexpr size_t kDefaultMinPrefix = 2;
static constexpr size_t kDefaultMinSuffix = 2;
// Predicate used to reject non-alphabetic characters before pattern lookup. Returning false causes
// the entire word to be skipped, matching the behavior of classic TeX hyphenation tables.
bool (*isLetter)(uint32_t);
// Language-specific case folding that matches how the TeX patterns were authored (usually lower-case
// ASCII for Latin and lowercase Cyrillic for Russian). Patterns are stored in UTF-8, so this must
// operate on Unicode scalars rather than bytes.
uint32_t (*toLower)(uint32_t);
// Minimum codepoints required on the left/right of any break. These correspond to TeX's
// lefthyphenmin and righthyphenmin knobs.
size_t minPrefix;
size_t minSuffix;
// Lightweight aggregate constructor so call sites can declare `const LiangWordConfig config(...)`
// without verbose member assignment boilerplate.
LiangWordConfig(bool (*letterFn)(uint32_t), uint32_t (*lowerFn)(uint32_t),
size_t prefix = kDefaultMinPrefix, size_t suffix = kDefaultMinSuffix)
: isLetter(letterFn), toLower(lowerFn), minPrefix(prefix), minSuffix(suffix) {}
};
// Shared Liang pattern evaluator used by every language-specific hyphenator.
std::vector<size_t> liangBreakIndexes(const std::vector<CodepointInfo>& cps,
const SerializedHyphenationPatterns& patterns,
const LiangWordConfig& config);

View File

@@ -1,404 +1,9 @@
#include "RussianHyphenator.h"
#include <algorithm>
#include <array>
#include <limits>
#include <vector>
#include "HyphenationLiterals.h"
namespace {
using CyrillicLiteral = HyphenLiteralT<uint32_t>;
constexpr uint32_t PFX_BEZ[3] = {0x0431, 0x0435, 0x0437};
constexpr uint32_t PFX_RAZ[3] = {0x0440, 0x0430, 0x0437};
constexpr uint32_t PFX_POD[3] = {0x043F, 0x043E, 0x0434};
constexpr uint32_t PFX_NAD[3] = {0x043D, 0x0430, 0x0434};
constexpr uint32_t PFX_PERE[4] = {0x043F, 0x0435, 0x0440, 0x0435};
constexpr uint32_t PFX_SVERH[5] = {0x0441, 0x0432, 0x0435, 0x0440, 0x0445};
constexpr uint32_t PFX_MEZH[3] = {0x043C, 0x0435, 0x0436};
constexpr uint32_t PFX_SUPER[5] = {0x0441, 0x0443, 0x043F, 0x0435, 0x0440};
constexpr uint32_t PFX_PRED[4] = {0x043F, 0x0440, 0x0435, 0x0434};
constexpr uint32_t PFX_SAMO[4] = {0x0441, 0x0430, 0x043C, 0x043E};
constexpr uint32_t PFX_OBO[3] = {0x043E, 0x0431, 0x043E};
constexpr uint32_t PFX_PROTIV[6] = {0x043F, 0x0440, 0x043E, 0x0442, 0x0438, 0x0432};
constexpr std::array<CyrillicLiteral, 12> RUSSIAN_PREFIXES = {{{PFX_BEZ, 3},
{PFX_RAZ, 3},
{PFX_POD, 3},
{PFX_NAD, 3},
{PFX_PERE, 4},
{PFX_SVERH, 5},
{PFX_MEZH, 3},
{PFX_SUPER, 5},
{PFX_PRED, 4},
{PFX_SAMO, 4},
{PFX_OBO, 3},
{PFX_PROTIV, 6}}};
constexpr uint32_t SFX_NOST[4] = {0x043D, 0x043E, 0x0441, 0x0442};
constexpr uint32_t SFX_STVO[4] = {0x0441, 0x0442, 0x0432, 0x043E};
constexpr uint32_t SFX_ENIE[4] = {0x0435, 0x043D, 0x0438, 0x0435};
constexpr uint32_t SFX_ATION[4] = {0x0430, 0x0446, 0x0438, 0x044F};
constexpr uint32_t SFX_CHIK[3] = {0x0447, 0x0438, 0x043A};
constexpr uint32_t SFX_NIK[3] = {0x043D, 0x0438, 0x043A};
constexpr uint32_t SFX_TEL[4] = {0x0442, 0x0435, 0x043B, 0x044C};
constexpr uint32_t SFX_SKII[4] = {0x0441, 0x043A, 0x0438, 0x0439};
constexpr uint32_t SFX_AL[6] = {0x0430, 0x043B, 0x044C, 0x043D, 0x044B, 0x0439};
constexpr uint32_t SFX_ISM[3] = {0x0438, 0x0437, 0x043C};
constexpr uint32_t SFX_LIV[5] = {0x043B, 0x0438, 0x0432, 0x044B, 0x0439};
constexpr uint32_t SFX_OST[4] = {0x043E, 0x0441, 0x0442, 0x044C};
constexpr std::array<CyrillicLiteral, 12> RUSSIAN_SUFFIXES = {{{SFX_NOST, 4},
{SFX_STVO, 4},
{SFX_ENIE, 4},
{SFX_ATION, 4},
{SFX_CHIK, 3},
{SFX_NIK, 3},
{SFX_TEL, 4},
{SFX_SKII, 4},
{SFX_AL, 6},
{SFX_ISM, 3},
{SFX_LIV, 5},
{SFX_OST, 4}}};
std::vector<uint32_t> lowercaseCyrillicWord(const std::vector<CodepointInfo>& cps) {
std::vector<uint32_t> lower;
lower.reserve(cps.size());
for (const auto& info : cps) {
lower.push_back(isCyrillicLetter(info.value) ? toLowerCyrillic(info.value) : info.value);
}
return lower;
}
bool russianSegmentHasVowel(const std::vector<CodepointInfo>& cps, const size_t start, const size_t end) {
if (start >= cps.size()) {
return false;
}
const size_t clampedEnd = std::min(end, cps.size());
for (size_t i = start; i < clampedEnd; ++i) {
if (isCyrillicVowel(cps[i].value)) {
return true;
}
}
return false;
}
bool exposesLeadingDoubleConsonant(const std::vector<CodepointInfo>& cps, const size_t index) {
if (index + 1 >= cps.size()) {
return false;
}
const auto first = cps[index].value;
const auto second = cps[index + 1].value;
if (!isCyrillicConsonant(first) || !isCyrillicConsonant(second)) {
return false;
}
if (toLowerCyrillic(first) != toLowerCyrillic(second)) {
return false;
}
const bool hasLeftVowel = index > 0 && isCyrillicVowel(cps[index - 1].value);
const bool hasRightVowel = (index + 2 < cps.size()) && isCyrillicVowel(cps[index + 2].value);
return hasLeftVowel && hasRightVowel;
}
bool exposesTrailingDoubleConsonant(const std::vector<CodepointInfo>& cps, const size_t index) {
if (index < 2) {
return false;
}
const auto last = cps[index - 1].value;
const auto prev = cps[index - 2].value;
if (!isCyrillicConsonant(last) || !isCyrillicConsonant(prev)) {
return false;
}
if (toLowerCyrillic(last) != toLowerCyrillic(prev)) {
return false;
}
const bool hasLeftVowel = (index >= 3) && isCyrillicVowel(cps[index - 3].value);
const bool hasRightVowel = (index < cps.size()) && isCyrillicVowel(cps[index].value);
return hasLeftVowel && hasRightVowel;
}
bool violatesDoubleConsonantRule(const std::vector<CodepointInfo>& cps, const size_t index) {
return exposesLeadingDoubleConsonant(cps, index) || exposesTrailingDoubleConsonant(cps, index);
}
// Checks if the codepoint is the Cyrillic soft sign (ь).
bool isSoftSign(uint32_t cp) { return toLowerCyrillic(cp) == 0x044C; }
// Checks if the codepoint is the Cyrillic hard sign (ъ).
bool isHardSign(uint32_t cp) { return toLowerCyrillic(cp) == 0x044A; }
// Checks if the codepoint is either the Cyrillic soft sign (ь) or hard sign (ъ).
bool isSoftOrHardSign(uint32_t cp) { return isSoftSign(cp) || isHardSign(cp); }
// Checks if the codepoint is the Cyrillic short i (й).
bool isCyrillicShortI(uint32_t cp) { return toLowerCyrillic(cp) == 0x0439; }
// Checks if the codepoint is the Cyrillic yeru (ы).
bool isCyrillicYeru(uint32_t cp) { return toLowerCyrillic(cp) == 0x044B; }
// Checks if the codepoint is a Russian prefix consonant that can start certain clusters.
bool isRussianPrefixConsonant(uint32_t cp) {
cp = toLowerCyrillic(cp);
return cp == 0x0432 || cp == 0x0437 || cp == 0x0441; // в, з, с
}
// Checks if the codepoint is a Russian sibilant consonant.
bool isRussianSibilant(uint32_t cp) {
cp = toLowerCyrillic(cp);
switch (cp) {
case 0x0437: // з
case 0x0441: // с
case 0x0436: // ж
case 0x0448: // ш
case 0x0449: // щ
case 0x0447: // ч
case 0x0446: // ц
return true;
default:
return false;
}
}
// Checks if the codepoint is a Russian stop consonant.
bool isRussianStop(uint32_t cp) {
cp = toLowerCyrillic(cp);
switch (cp) {
case 0x0431: // б
case 0x0433: // г
case 0x0434: // д
case 0x043F: // п
case 0x0442: // т
case 0x043A: // к
return true;
default:
return false;
}
}
// Checks the sonority rank of a Russian consonant for syllable onset validation.
int russianSonority(uint32_t cp) {
cp = toLowerCyrillic(cp);
switch (cp) {
case 0x043B: // л
case 0x0440: // р
case 0x0439: // й
return 4;
case 0x043C: // м
case 0x043D: // н
return 3;
case 0x0432: // в
case 0x0437: // з
case 0x0436: // ж
return 2;
case 0x0444: // ф
case 0x0441: // с
case 0x0448: // ш
case 0x0449: // щ
case 0x0447: // ч
case 0x0446: // ц
case 0x0445: // х
return 1;
case 0x0431: // б
case 0x0433: // г
case 0x0434: // д
case 0x043F: // п
case 0x0442: // т
case 0x043A: // к
return 0;
default:
return 1;
}
}
// Applies Russian sonority sequencing to ensure the consonant cluster can start a syllable.
bool russianClusterIsValidOnset(const std::vector<CodepointInfo>& cps, const size_t start, const size_t end) {
if (start >= end) {
return false;
}
for (size_t i = start; i < end; ++i) {
const auto cp = cps[i].value;
if (!isCyrillicConsonant(cp) || isSoftOrHardSign(cp)) {
return false;
}
}
if (end - start == 1) {
return true;
}
for (size_t i = start; i + 1 < end; ++i) {
const uint32_t current = cps[i].value;
const uint32_t next = cps[i + 1].value;
const int currentRank = russianSonority(current);
const int nextRank = russianSonority(next);
if (currentRank > nextRank) {
const bool atClusterStart = (i == start);
const bool prefixAllowance = atClusterStart && isRussianPrefixConsonant(current);
const bool sibilantAllowance = isRussianSibilant(current) && isRussianStop(next);
if (!prefixAllowance && !sibilantAllowance) {
return false;
}
}
}
return true;
}
// Identifies splits within double consonant clusters.
size_t doubleConsonantSplit(const std::vector<CodepointInfo>& cps, const size_t clusterStart, const size_t clusterEnd) {
for (size_t i = clusterStart; i + 1 < clusterEnd; ++i) {
const auto left = cps[i].value;
const auto right = cps[i + 1].value;
if (isCyrillicConsonant(left) && toLowerCyrillic(left) == toLowerCyrillic(right) && !isSoftOrHardSign(right)) {
return i + 1;
}
}
return std::numeric_limits<size_t>::max();
}
// Prevents breaks that would create forbidden suffixes.
bool beginsWithForbiddenSuffix(const std::vector<CodepointInfo>& cps, const size_t index) {
if (index >= cps.size()) {
return true;
}
const auto cp = cps[index].value;
return isSoftOrHardSign(cp) || isCyrillicShortI(cp) || isCyrillicYeru(cp);
}
// Validates whether a hyphenation break is allowed at the specified index.
bool russianBreakAllowed(const std::vector<CodepointInfo>& cps, const size_t breakIndex) {
if (breakIndex == 0 || breakIndex >= cps.size()) {
return false;
}
const size_t prefixLen = breakIndex;
const size_t suffixLen = cps.size() - breakIndex;
if (prefixLen < 2 || suffixLen < 2) {
return false;
}
if (!russianSegmentHasVowel(cps, 0, breakIndex) || !russianSegmentHasVowel(cps, breakIndex, cps.size())) {
return false;
}
if (beginsWithForbiddenSuffix(cps, breakIndex)) {
return false;
}
if (violatesDoubleConsonantRule(cps, breakIndex)) {
return false;
}
return true;
}
// Chooses the longest valid onset contained within the inter-vowel cluster.
size_t russianOnsetLength(const std::vector<CodepointInfo>& cps, const size_t clusterStart, const size_t clusterEnd) {
const size_t clusterLen = clusterEnd - clusterStart;
if (clusterLen == 0) {
return 0;
}
const size_t maxLen = std::min<size_t>(4, clusterLen);
for (size_t len = maxLen; len >= 1; --len) {
const size_t suffixStart = clusterEnd - len;
if (russianClusterIsValidOnset(cps, suffixStart, clusterEnd)) {
return len;
}
}
return 1;
}
// Prevents hyphenation splits immediately beside ь/ъ characters.
bool nextToSoftSign(const std::vector<CodepointInfo>& cps, const size_t index) {
if (index == 0 || index >= cps.size()) {
return false;
}
const auto left = cps[index - 1].value;
const auto right = cps[index].value;
return isSoftOrHardSign(left) || isSoftOrHardSign(right);
}
void appendMorphologyBreaks(const std::vector<CodepointInfo>& cps, const std::vector<uint32_t>& lowerWord,
std::vector<size_t>& indexes) {
appendLiteralBreaks(
lowerWord, RUSSIAN_PREFIXES, RUSSIAN_SUFFIXES,
[&](const size_t breakIndex) { return russianBreakAllowed(cps, breakIndex); }, indexes);
}
// Produces syllable break indexes tailored to Russian phonotactics.
std::vector<size_t> russianBreakIndexes(const std::vector<CodepointInfo>& cps) {
std::vector<size_t> indexes;
const size_t wordSize = cps.size();
// Collect vowel positions.
std::vector<size_t> vowelPositions;
vowelPositions.reserve(wordSize / 2); // Typical estimate: ~50% vowels
for (size_t i = 0; i < wordSize; ++i) {
if (isCyrillicVowel(cps[i].value)) {
vowelPositions.push_back(i);
}
}
// Need at least 2 vowels to create a syllable break.
if (vowelPositions.size() < 2) {
return indexes;
}
// Process inter-vowel clusters for hyphenation points.
for (size_t v = 0; v + 1 < vowelPositions.size(); ++v) {
const size_t leftVowel = vowelPositions[v];
const size_t rightVowel = vowelPositions[v + 1];
const size_t suffixLen = wordSize - rightVowel;
// Adjacent vowels: can break between them if constraints allow.
if (rightVowel - leftVowel == 1) {
if (rightVowel >= MIN_PREFIX_CP && suffixLen >= MIN_SUFFIX_CP && !nextToSoftSign(cps, rightVowel) &&
russianBreakAllowed(cps, rightVowel)) {
indexes.push_back(rightVowel);
}
continue;
}
// Consonant cluster between vowels: find optimal break point.
const size_t clusterStart = leftVowel + 1;
const size_t clusterEnd = rightVowel;
// Try double consonant split first (preferred).
size_t breakIndex = doubleConsonantSplit(cps, clusterStart, clusterEnd);
// Fall back to onset-based split.
if (breakIndex == std::numeric_limits<size_t>::max()) {
const size_t onsetLen = russianOnsetLength(cps, clusterStart, clusterEnd);
breakIndex = clusterEnd - onsetLen;
}
// Validate candidate break point.
if (breakIndex < MIN_PREFIX_CP || suffixLen < MIN_SUFFIX_CP || nextToSoftSign(cps, breakIndex) ||
!russianBreakAllowed(cps, breakIndex)) {
continue;
}
indexes.push_back(breakIndex);
}
const auto lowerWord = lowercaseCyrillicWord(cps);
const size_t preDedupeCount = indexes.size();
appendMorphologyBreaks(cps, lowerWord, indexes);
if (indexes.size() > preDedupeCount) {
std::sort(indexes.begin(), indexes.end());
indexes.erase(std::unique(indexes.begin(), indexes.end()), indexes.end());
}
return indexes;
}
} // namespace
#include "LiangHyphenation.h"
#include "generated/hyph-ru-ru.trie.h"
const RussianHyphenator& RussianHyphenator::instance() {
static RussianHyphenator instance;
@@ -406,5 +11,9 @@ const RussianHyphenator& RussianHyphenator::instance() {
}
std::vector<size_t> RussianHyphenator::breakIndexes(const std::vector<CodepointInfo>& cps) const {
return russianBreakIndexes(cps);
// Russian uses the same Liang runtime but needs Cyrillic-aware helpers plus symmetrical
// lefthyphenmin/righthyphenmin values. Most Russian TeX distributions stick with 2/2, which keeps
// short words readable while still allowing frequent hyphenation opportunities.
const LiangWordConfig config(isCyrillicLetter, toLowerCyrillic, minPrefix(), minSuffix());
return liangBreakIndexes(cps, ru_ru_patterns, config);
}

View File

@@ -8,6 +8,8 @@ class RussianHyphenator final : public LanguageHyphenator {
static const RussianHyphenator& instance();
std::vector<size_t> breakIndexes(const std::vector<CodepointInfo>& cps) const override;
size_t minPrefix() const override { return 2; }
size_t minSuffix() const override { return 2; }
private:
RussianHyphenator() = default;

View File

@@ -0,0 +1,10 @@
#pragma once
#include <cstddef>
#include <cstdint>
// Lightweight descriptor that points at a serialized Liang hyphenation trie stored in flash.
struct SerializedHyphenationPatterns {
const std::uint8_t* data;
size_t size;
};

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff