checkpoint: pre list-to-vector refactor, fixes dictionary crash, mostly

- Add uncompressed dictionary (.dict) file support to avoid decompression memory issues
- Implement chunked on-demand parsing for large definitions
- Add backward navigation with re-parse capability
- Limit cached pages to MAX_CACHED_PAGES (4) to prevent memory exhaustion
- Add helper script for extracting/recompressing dictzip files
This commit is contained in:
cottongin 2026-01-29 09:33:40 -05:00
parent 8b41dccfb9
commit 62643ae933
No known key found for this signature in database
GPG Key ID: 0ECC91FE4655C262
5 changed files with 770 additions and 55 deletions

View File

@ -205,6 +205,19 @@ bool StarDict::loadDictzipHeader() {
bool StarDict::begin() {
if (!loadInfo()) return false;
// Try uncompressed .dict file first (preferred - no memory overhead)
const std::string dictPath = basePath + ".dict";
FsFile testFile;
if (SdMan.openFileForRead("DICT", dictPath, testFile)) {
testFile.close();
useUncompressed = true;
Serial.printf("[%lu] [DICT] Using uncompressed .dict file (no decompression needed)\n", millis());
return true;
}
// Fall back to compressed .dict.dz
useUncompressed = false;
if (!loadDictzipHeader()) return false;
return true;
}
@ -238,12 +251,46 @@ bool StarDict::readWordAtPosition(FsFile& idxFile, uint32_t& position, std::stri
return true;
}
bool StarDict::readDefinitionDirect(uint32_t offset, uint32_t size, std::string& definition) {
// Read directly from uncompressed .dict file - no decompression needed!
const std::string dictPath = basePath + ".dict";
FsFile file;
if (!SdMan.openFileForRead("DICT", dictPath, file)) {
Serial.printf("[DICT-DBG] Failed to open .dict file\n");
return false;
}
// Seek to the definition offset
if (!file.seek(offset)) {
Serial.printf("[DICT-DBG] Failed to seek to offset %lu\n", offset);
file.close();
return false;
}
// Read the definition directly into the string
definition.resize(size);
const int bytesRead = file.read(&definition[0], size);
file.close();
if (bytesRead != static_cast<int>(size)) {
Serial.printf("[DICT-DBG] Read %d bytes, expected %lu\n", bytesRead, size);
definition.clear();
return false;
}
return true;
}
bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string& definition) {
if (!dzInfo.loaded) return false;
if (!dzInfo.loaded) {
Serial.printf("[DICT-DBG] dzInfo not loaded!\n");
return false;
}
const std::string dzPath = basePath + ".dict.dz";
FsFile file;
if (!SdMan.openFileForRead("DICT", dzPath, file)) {
Serial.printf("[DICT-DBG] Failed to open dict.dz file\n");
return false;
}
@ -252,7 +299,11 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
const uint32_t endChunk = (offset + size - 1) / dzInfo.chunkLength;
const uint32_t startOffsetInChunk = offset % dzInfo.chunkLength;
Serial.printf("[DICT-DBG] Chunks: start=%lu, end=%lu, total=%u\n",
startChunk, endChunk, dzInfo.chunkCount);
if (endChunk >= dzInfo.chunkCount) {
Serial.printf("[DICT-DBG] endChunk %lu >= chunkCount %u\n", endChunk, dzInfo.chunkCount);
file.close();
return false;
}
@ -263,13 +314,38 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
fileOffset += dzInfo.chunkSizes[i];
}
// Allocate buffers
const uint32_t maxCompressedSize = 65536; // Max compressed chunk size
// Calculate actual max compressed size needed for the chunks we'll process
uint32_t maxCompressedSize = 0;
for (uint32_t i = startChunk; i <= endChunk; i++) {
if (dzInfo.chunkSizes[i] > maxCompressedSize) {
maxCompressedSize = dzInfo.chunkSizes[i];
}
}
// Allocate buffers - allocate inflator FIRST (smallest) to reduce fragmentation impact
// tinfl_decompressor is ~11KB, so total allocations are ~85KB
Serial.printf("[DICT-DBG] Allocating inflator=%u, comp=%lu, decomp=%u bytes\n",
sizeof(tinfl_decompressor), maxCompressedSize, dzInfo.chunkLength);
auto* inflator = static_cast<tinfl_decompressor*>(malloc(sizeof(tinfl_decompressor)));
if (!inflator) {
Serial.printf("[DICT-DBG] inflator alloc failed! (need %u bytes)\n", sizeof(tinfl_decompressor));
file.close();
return false;
}
auto* compressedBuf = static_cast<uint8_t*>(malloc(maxCompressedSize));
if (!compressedBuf) {
Serial.printf("[DICT-DBG] compressedBuf alloc failed!\n");
free(inflator);
file.close();
return false;
}
auto* decompressedBuf = static_cast<uint8_t*>(malloc(dzInfo.chunkLength));
if (!compressedBuf || !decompressedBuf) {
if (!decompressedBuf) {
Serial.printf("[DICT-DBG] decompressedBuf alloc failed!\n");
free(inflator);
free(compressedBuf);
free(decompressedBuf);
file.close();
return false;
}
@ -277,13 +353,15 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
definition.clear();
definition.reserve(size);
// Process each needed chunk
// Process each needed chunk (reusing inflator allocation)
for (uint32_t chunk = startChunk; chunk <= endChunk; chunk++) {
const uint16_t compressedSize = dzInfo.chunkSizes[chunk];
// Seek and read compressed data
file.seek(fileOffset);
if (file.read(compressedBuf, compressedSize) != compressedSize) {
Serial.printf("[DICT-DBG] File read failed at offset %lu, size %u\n", fileOffset, compressedSize);
free(inflator);
free(compressedBuf);
free(decompressedBuf);
file.close();
@ -291,13 +369,6 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
}
// Decompress using raw inflate (no zlib header)
auto* inflator = static_cast<tinfl_decompressor*>(malloc(sizeof(tinfl_decompressor)));
if (!inflator) {
free(compressedBuf);
free(decompressedBuf);
file.close();
return false;
}
tinfl_init(inflator);
size_t inBytes = compressedSize;
@ -306,19 +377,13 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
tinfl_decompress(inflator, compressedBuf, &inBytes, decompressedBuf, decompressedBuf, &outBytes,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | TINFL_FLAG_PARSE_ZLIB_HEADER);
free(inflator);
if (status != TINFL_STATUS_DONE && status != TINFL_STATUS_HAS_MORE_OUTPUT) {
// Try without zlib header flag
inflator = static_cast<tinfl_decompressor*>(malloc(sizeof(tinfl_decompressor)));
if (inflator) {
tinfl_init(inflator);
inBytes = compressedSize;
outBytes = dzInfo.chunkLength;
tinfl_decompress(inflator, compressedBuf, &inBytes, decompressedBuf, decompressedBuf, &outBytes,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
free(inflator);
}
tinfl_init(inflator);
inBytes = compressedSize;
outBytes = dzInfo.chunkLength;
tinfl_decompress(inflator, compressedBuf, &inBytes, decompressedBuf, decompressedBuf, &outBytes,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
}
// Extract the portion we need from this chunk
@ -342,6 +407,7 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
fileOffset += compressedSize;
}
free(inflator);
free(compressedBuf);
free(decompressedBuf);
file.close();
@ -349,9 +415,9 @@ bool StarDict::decompressDefinition(uint32_t offset, uint32_t size, std::string&
return true;
}
// StarDict comparison function: case-insensitive first, then case-sensitive as tiebreaker
// StarDict comparison function: case-insensitive matching
int StarDict::stardictStrcmp(const std::string& a, const std::string& b) {
// First: case-insensitive comparison (like g_ascii_strcasecmp)
// Case-insensitive comparison (like g_ascii_strcasecmp)
size_t i = 0;
while (i < a.length() && i < b.length()) {
const int ca = std::tolower(static_cast<unsigned char>(a[i]));
@ -362,8 +428,8 @@ int StarDict::stardictStrcmp(const std::string& a, const std::string& b) {
if (a.length() != b.length()) {
return static_cast<int>(a.length()) - static_cast<int>(b.length());
}
// If case-insensitive equal, use case-sensitive as tiebreaker
return a.compare(b);
// Case-insensitive match found
return 0;
}
std::string StarDict::normalizeWord(const std::string& word) {
@ -403,6 +469,9 @@ StarDict::LookupResult StarDict::lookup(const std::string& word) {
return result;
}
Serial.printf("[DICT-DBG] Searching for: '%s' (normalized: '%s')\n",
word.c_str(), normalizedSearch.c_str());
// First try .idx (main entries) - use prefix jump table for fast lookup
const std::string idxPath = basePath + ".idx";
FsFile idxFile;
@ -418,7 +487,10 @@ StarDict::LookupResult StarDict::lookup(const std::string& word) {
const uint16_t prefixIdx = DictPrefixIndex::prefixToIndex(normalizedSearch[0], normalizedSearch[1]);
position = DictPrefixIndex::dictPrefixOffsets[prefixIdx];
}
Serial.printf("[DICT-DBG] Starting at position %lu (prefix: %c%c)\n",
position, normalizedSearch[0], normalizedSearch[1]);
bool found = false;
uint32_t wordCount = 0;
while (position < info.idxfilesize) {
std::string currentWord;
@ -427,13 +499,24 @@ StarDict::LookupResult StarDict::lookup(const std::string& word) {
if (!readWordAtPosition(idxFile, position, currentWord, dictOffset, dictSize)) {
break;
}
wordCount++;
if (wordCount % 50000 == 0) {
Serial.printf("[DICT-DBG] Progress: %lu words scanned, pos=%lu, current='%s'\n",
wordCount, position, currentWord.c_str());
}
// Use stardictStrcmp for case-insensitive matching
const int cmp = stardictStrcmp(normalizedSearch, currentWord);
if (cmp == 0) {
Serial.printf("[DICT-DBG] MATCH: '%s' == '%s' (offset=%lu, size=%lu)\n",
normalizedSearch.c_str(), currentWord.c_str(), dictOffset, dictSize);
std::string definition;
if (decompressDefinition(dictOffset, dictSize, definition)) {
const bool loaded = useUncompressed
? readDefinitionDirect(dictOffset, dictSize, definition)
: decompressDefinition(dictOffset, dictSize, definition);
if (loaded) {
Serial.printf("[DICT-DBG] Definition loaded, %u bytes\n", definition.length());
if (!found) {
result.word = currentWord;
result.definition = definition;
@ -442,14 +525,20 @@ StarDict::LookupResult StarDict::lookup(const std::string& word) {
} else {
result.definition += "</html>" + definition;
}
} else {
Serial.printf("[DICT-DBG] Definition load FAILED!\n");
}
// Continue scanning for additional matches (same word, different case)
} else if (cmp < 0) {
// Passed where target would be (file is sorted)
} else if (found) {
// We had matches but now moved past them - safe to stop
break;
}
// Note: Cannot use early-break before first match because prefix index
// may not land exactly at target position
}
Serial.printf("[DICT-DBG] Search complete: %lu words scanned, found=%s\n",
wordCount, found ? "YES" : "NO");
idxFile.close();
// If not found in main index, try synonym file with prefix jump
@ -502,7 +591,10 @@ StarDict::LookupResult StarDict::lookup(const std::string& word) {
uint32_t dictOffset, dictSize;
if (readWordAtPosition(idxFile2, pos, mainWord, dictOffset, dictSize)) {
std::string definition;
if (decompressDefinition(dictOffset, dictSize, definition)) {
const bool loaded = useUncompressed
? readDefinitionDirect(dictOffset, dictSize, definition)
: decompressDefinition(dictOffset, dictSize, definition);
if (loaded) {
result.word = synWord;
result.definition = definition;
result.found = true;
@ -513,10 +605,9 @@ StarDict::LookupResult StarDict::lookup(const std::string& word) {
idxFile2.close();
}
break; // Found a match, stop searching
} else if (cmp < 0) {
// Passed where it would be (file is sorted)
break;
}
// Note: Cannot use early-break optimization here because prefix index
// may not land exactly at target position
}
synFile.close();
}

View File

@ -6,7 +6,7 @@
#include <string>
// StarDict dictionary lookup library
// Supports .ifo/.idx/.dict.dz format with linear scan lookup
// Supports .ifo/.idx/.dict (uncompressed) and .ifo/.idx/.dict.dz (compressed) formats
class StarDict {
public:
struct DictInfo {
@ -38,16 +38,22 @@ class StarDict {
};
DictzipInfo dzInfo;
// Whether to use uncompressed .dict file (preferred) or compressed .dict.dz
bool useUncompressed = false;
// Parse .ifo file
bool loadInfo();
// Load dictzip header for random access
// Load dictzip header for random access (only if using compressed)
bool loadDictzipHeader();
// Read word at given index file position, returns word and advances position
bool readWordAtPosition(FsFile& idxFile, uint32_t& position, std::string& word, uint32_t& dictOffset,
uint32_t& dictSize);
// Read definition directly from uncompressed .dict file (no decompression needed)
bool readDefinitionDirect(uint32_t offset, uint32_t size, std::string& definition);
// Decompress a portion of the .dict.dz file
bool decompressDefinition(uint32_t offset, uint32_t size, std::string& definition);

View File

@ -0,0 +1,335 @@
#!/usr/bin/env python3
"""
Recompress a dictzip file with a custom chunk size.
Dictzip is a gzip-compatible format that allows random access by compressing
data in independent chunks. The standard dictzip uses ~58KB chunks, but this
can cause memory issues on embedded devices like ESP32.
This script recompresses dictionary files with smaller chunks (default 16KB)
to reduce memory requirements during decompression.
Usage:
# From uncompressed .dict file:
python recompress_dictzip.py reader.dict reader.dict.dz --chunk-size 16384
# From existing .dict.dz file (will decompress first):
python recompress_dictzip.py reader.dict.dz reader_small.dict.dz --chunk-size 16384
"""
import argparse
import gzip
import struct
import sys
import time
import zlib
from pathlib import Path
def read_input_file(input_path: Path) -> bytes:
"""Read input file, decompressing if it's a .dz or .gz file."""
suffix = input_path.suffix.lower()
if suffix in ('.dz', '.gz'):
print(f"Decompressing {input_path}...")
with gzip.open(input_path, 'rb') as f:
data = f.read()
print(f" Decompressed size: {len(data):,} bytes")
return data
else:
print(f"Reading {input_path}...")
with open(input_path, 'rb') as f:
data = f.read()
print(f" Size: {len(data):,} bytes")
return data
def compress_chunk(data: bytes, level: int = 9) -> bytes:
"""Compress a single chunk using raw deflate (no zlib header)."""
# Use raw deflate (-15 for raw, 15 for window size)
compressor = zlib.compressobj(level, zlib.DEFLATED, -15)
compressed = compressor.compress(data)
compressed += compressor.flush()
return compressed
def create_dictzip(data: bytes, output_path: Path, chunk_size: int = 16384,
compression_level: int = 9) -> None:
"""
Create a dictzip file from uncompressed data.
Dictzip format:
- Standard gzip header with FEXTRA flag
- Extra field containing 'RA' subfield with chunk info
- Compressed chunks (raw deflate, no headers)
- Standard gzip trailer (CRC32 + ISIZE)
"""
# Validate chunk size (must fit in 16-bit field)
if chunk_size > 65535:
raise ValueError(f"Chunk size {chunk_size} exceeds maximum of 65535")
if chunk_size < 1024:
raise ValueError(f"Chunk size {chunk_size} is too small (minimum 1024)")
# Calculate number of chunks
num_chunks = (len(data) + chunk_size - 1) // chunk_size
# Check if we can fit all chunk sizes in the extra field
# Extra field max is 65535 bytes, each chunk size takes 2 bytes, plus 6 bytes header
max_chunks = (65535 - 6) // 2
if num_chunks > max_chunks:
raise ValueError(f"Too many chunks ({num_chunks}) for dictzip format (max {max_chunks})")
print(f"Compressing into {num_chunks} chunks of {chunk_size} bytes...")
# Compress each chunk and collect sizes
compressed_chunks = []
chunk_sizes = []
for i in range(num_chunks):
start = i * chunk_size
end = min(start + chunk_size, len(data))
chunk_data = data[start:end]
compressed = compress_chunk(chunk_data, compression_level)
compressed_chunks.append(compressed)
chunk_sizes.append(len(compressed))
if (i + 1) % 500 == 0 or i == num_chunks - 1:
print(f" Compressed chunk {i + 1}/{num_chunks}")
# Calculate CRC32 and size for gzip trailer
crc32 = zlib.crc32(data) & 0xffffffff
isize = len(data) & 0xffffffff
# Build the extra field
# RA subfield: VER(2) + CHLEN(2) + CHCNT(2) + sizes[CHCNT](2 each)
ra_subfield_len = 6 + 2 * num_chunks
extra_field = bytearray()
extra_field.extend(b'RA') # SI1, SI2
extra_field.extend(struct.pack('<H', ra_subfield_len)) # LEN
extra_field.extend(struct.pack('<H', 1)) # VER
extra_field.extend(struct.pack('<H', chunk_size)) # CHLEN
extra_field.extend(struct.pack('<H', num_chunks)) # CHCNT
for size in chunk_sizes:
if size > 65535:
raise ValueError(f"Compressed chunk size {size} exceeds 65535 bytes")
extra_field.extend(struct.pack('<H', size))
xlen = len(extra_field)
# Build gzip header
# Flags: FEXTRA (0x04)
timestamp = int(time.time())
xfl = 2 if compression_level == 9 else (4 if compression_level == 1 else 0)
header = bytearray()
header.extend(b'\x1f\x8b') # Magic number
header.append(0x08) # Compression method (deflate)
header.append(0x04) # Flags: FEXTRA
header.extend(struct.pack('<I', timestamp)) # MTIME
header.append(xfl) # XFL
header.append(0xff) # OS (unknown)
header.extend(struct.pack('<H', xlen)) # XLEN
header.extend(extra_field)
# Write output file
print(f"Writing {output_path}...")
with open(output_path, 'wb') as f:
f.write(header)
for chunk in compressed_chunks:
f.write(chunk)
f.write(struct.pack('<I', crc32))
f.write(struct.pack('<I', isize))
# Report stats
output_size = output_path.stat().st_size
ratio = (1 - output_size / len(data)) * 100
print(f" Output size: {output_size:,} bytes ({ratio:.1f}% compression)")
print(f" Chunk size: {chunk_size} bytes")
print(f" Number of chunks: {num_chunks}")
def verify_dictzip(path: Path) -> bool:
"""Verify a dictzip file by reading its header and decompressing chunk by chunk."""
print(f"Verifying {path}...")
with open(path, 'rb') as f:
# Read gzip header
magic = f.read(2)
if magic != b'\x1f\x8b':
print(f" ERROR: Invalid gzip magic number")
return False
method = f.read(1)[0]
if method != 8:
print(f" ERROR: Unknown compression method: {method}")
return False
flags = f.read(1)[0]
if not (flags & 0x04):
print(f" ERROR: FEXTRA flag not set - not a dictzip file")
return False
f.read(4) # MTIME
f.read(1) # XFL
f.read(1) # OS
# Read extra field
xlen = struct.unpack('<H', f.read(2))[0]
extra = f.read(xlen)
# Parse extra field for RA subfield
pos = 0
found_ra = False
chlen = 0
chcnt = 0
chunk_sizes = []
while pos < len(extra):
si1 = extra[pos]
si2 = extra[pos + 1]
slen = struct.unpack('<H', extra[pos + 2:pos + 4])[0]
if si1 == ord('R') and si2 == ord('A'):
found_ra = True
ra_data = extra[pos + 4:pos + 4 + slen]
ver = struct.unpack('<H', ra_data[0:2])[0]
chlen = struct.unpack('<H', ra_data[2:4])[0]
chcnt = struct.unpack('<H', ra_data[4:6])[0]
print(f" Version: {ver}")
print(f" Chunk size: {chlen} bytes")
print(f" Chunk count: {chcnt}")
# Verify chunk sizes array
if len(ra_data) != 6 + 2 * chcnt:
print(f" ERROR: Chunk sizes array length mismatch")
return False
for i in range(chcnt):
size = struct.unpack('<H', ra_data[6 + 2*i:8 + 2*i])[0]
chunk_sizes.append(size)
print(f" Total compressed data: {sum(chunk_sizes):,} bytes")
break
pos += 4 + slen
if not found_ra:
print(f" ERROR: RA subfield not found - not a dictzip file")
return False
# Decompress chunk by chunk (like the firmware does)
data_start = f.tell()
decompressed_data = bytearray()
try:
for i, comp_size in enumerate(chunk_sizes):
f.seek(data_start + sum(chunk_sizes[:i]))
compressed_chunk = f.read(comp_size)
# Decompress using raw inflate (no zlib header)
decompressor = zlib.decompressobj(-15)
decompressed_chunk = decompressor.decompress(compressed_chunk)
decompressed_chunk += decompressor.flush()
decompressed_data.extend(decompressed_chunk)
print(f" Decompressed size: {len(decompressed_data):,} bytes")
# Verify CRC32 from trailer
f.seek(-8, 2) # Seek to 8 bytes before end
expected_crc = struct.unpack('<I', f.read(4))[0]
expected_size = struct.unpack('<I', f.read(4))[0]
actual_crc = zlib.crc32(bytes(decompressed_data)) & 0xffffffff
actual_size = len(decompressed_data) & 0xffffffff
if actual_crc != expected_crc:
print(f" ERROR: CRC mismatch: expected {expected_crc:08x}, got {actual_crc:08x}")
return False
if actual_size != expected_size:
print(f" ERROR: Size mismatch: expected {expected_size}, got {actual_size}")
return False
print(f" CRC32: {actual_crc:08x} (verified)")
print(f" Verification: PASSED")
return True
except Exception as e:
print(f" ERROR: Decompression failed: {e}")
return False
def main():
parser = argparse.ArgumentParser(
description='Recompress a dictzip file with a custom chunk size.',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Recompress with 16KB chunks (recommended for ESP32):
%(prog)s reader.dict reader.dict.dz --chunk-size 16384
# Recompress from existing .dz file:
%(prog)s reader.dict.dz reader_small.dict.dz --chunk-size 16384
# Verify a dictzip file:
%(prog)s --verify reader.dict.dz
""")
parser.add_argument('input', nargs='?', help='Input .dict or .dict.dz file')
parser.add_argument('output', nargs='?', help='Output .dict.dz file')
parser.add_argument('--chunk-size', '-c', type=int, default=16384,
help='Chunk size in bytes (default: 16384, i.e., 16KB)')
parser.add_argument('--compression-level', '-l', type=int, default=9,
choices=range(1, 10), metavar='1-9',
help='Compression level 1-9 (default: 9)')
parser.add_argument('--verify', '-v', action='store_true',
help='Verify a dictzip file instead of compressing')
args = parser.parse_args()
if args.verify:
if not args.input:
parser.error("Input file required for verification")
input_path = Path(args.input)
if not input_path.exists():
print(f"Error: File not found: {input_path}")
sys.exit(1)
success = verify_dictzip(input_path)
sys.exit(0 if success else 1)
if not args.input or not args.output:
parser.error("Both input and output files are required")
input_path = Path(args.input)
output_path = Path(args.output)
if not input_path.exists():
print(f"Error: Input file not found: {input_path}")
sys.exit(1)
if output_path.exists():
response = input(f"Output file {output_path} exists. Overwrite? [y/N] ")
if response.lower() != 'y':
print("Aborted.")
sys.exit(1)
# Read and decompress input if needed
data = read_input_file(input_path)
# Create new dictzip with specified chunk size
create_dictzip(data, output_path, args.chunk_size, args.compression_level)
# Verify the output
print()
if verify_dictzip(output_path):
print(f"\nSuccess! Created {output_path} with {args.chunk_size}-byte chunks.")
else:
print(f"\nError: Verification failed!")
sys.exit(1)
if __name__ == '__main__':
main()

View File

@ -3,6 +3,10 @@
#include <DictHtmlParser.h>
#include <GfxRenderer.h>
#include <algorithm>
#include <cctype>
#include <cstring>
#include "DictionaryMargins.h"
#include "MappedInputManager.h"
#include "fontIds.h"
@ -15,22 +19,28 @@ void DictionaryResultActivity::taskTrampoline(void* param) {
void DictionaryResultActivity::onEnter() {
Activity::onEnter();
Serial.printf("[DICT-DBG] DictionaryResult onEnter, defLen=%u\n", rawDefinition.length());
renderingMutex = xSemaphoreCreateMutex();
currentPage = 0;
// Process definition for display
if (!notFound) {
Serial.printf("[DICT-DBG] Starting paginateDefinition...\n");
paginateDefinition();
Serial.printf("[DICT-DBG] Pagination done, %u pages\n", pages.size());
}
updateRequired = true;
Serial.printf("[DICT-DBG] Creating display task...\n");
xTaskCreate(&DictionaryResultActivity::taskTrampoline, "DictResultTask",
4096, // Stack size
this, // Parameters
1, // Priority
&displayTaskHandle // Task handle
);
Serial.printf("[DICT-DBG] Task created\n");
}
void DictionaryResultActivity::onExit() {
@ -61,24 +71,51 @@ void DictionaryResultActivity::loop() {
}
// Handle page navigation - use orientation-aware PageBack/PageForward buttons
if (!notFound && pages.size() > 1) {
if (!notFound && !pages.empty()) {
const bool prevPressed = mappedInput.wasPressed(MappedInputManager::Button::PageBack) ||
mappedInput.wasPressed(MappedInputManager::Button::Left);
const bool nextPressed = mappedInput.wasPressed(MappedInputManager::Button::PageForward) ||
mappedInput.wasPressed(MappedInputManager::Button::Right);
if (prevPressed && currentPage > 0) {
currentPage--;
updateRequired = true;
} else if (nextPressed && currentPage < static_cast<int>(pages.size()) - 1) {
currentPage++;
updateRequired = true;
if (prevPressed) {
if (currentPage > 0) {
// Navigate within cached pages
currentPage--;
updateRequired = true;
} else if (firstPageNumber > 1) {
// At first cached page but earlier pages exist - re-parse to get them
const int targetPage = firstPageNumber - 1; // Go to the page before current first
Serial.printf("[DICT-DBG] Re-parsing to reach page %d\n", targetPage);
reparseToPage(targetPage);
updateRequired = true;
}
} else if (nextPressed) {
// Check if we can navigate to existing cached page
if (currentPage < static_cast<int>(pages.size()) - 1) {
currentPage++;
updateRequired = true;
} else if (hasMoreContent) {
// At end of cached pages but more content available - parse next chunk
Serial.printf("[DICT-DBG] Parsing next chunk on navigation (page %d)\n", currentPage);
const size_t pagesBefore = pages.size();
parseNextChunk();
// If new pages were added, navigate to the next one
if (pages.size() > pagesBefore) {
currentPage++;
updateRequired = true;
}
}
// else: at true end of content, do nothing
}
}
}
void DictionaryResultActivity::paginateDefinition() {
pages.clear();
parsePosition = 0;
hasMoreContent = false;
firstPageNumber = 1;
if (rawDefinition.empty()) {
notFound = true;
@ -99,14 +136,55 @@ void DictionaryResultActivity::paginateDefinition() {
const int textWidth = pageWidth - textMargin - marginRight - 10;
const int textHeight = pageHeight - marginTop - marginBottom - headerHeight - footerHeight;
const int lineHeight = renderer.getLineHeight(UI_10_FONT_ID);
const int linesPerPage = textHeight / lineHeight;
// Collect all TextBlocks from the HTML parser
// For chunked parsing, we estimate how much HTML to parse at a time
// Roughly: each line is ~40-60 chars, so one page ≈ linesPerPage * 60 bytes of text
// With HTML overhead, multiply by ~2, plus buffer for finding break points
constexpr size_t CHUNK_SIZE_BASE = 1500; // Base chunk size
const size_t chunkSize = std::max(CHUNK_SIZE_BASE, static_cast<size_t>(linesPerPage * 120));
Serial.printf("[DICT-DBG] Chunked parsing: defLen=%u, chunkSize=%u, linesPerPage=%d\n",
rawDefinition.length(), chunkSize, linesPerPage);
// Determine how much to parse for first page
size_t parseEnd;
if (rawDefinition.length() <= chunkSize) {
// Small definition - parse it all
parseEnd = rawDefinition.length();
hasMoreContent = false;
} else {
// Large definition - find a good break point
parseEnd = findHtmlBreakPoint(rawDefinition, chunkSize / 2, chunkSize);
hasMoreContent = (parseEnd < rawDefinition.length());
}
// Extract the chunk to parse
std::string chunk = rawDefinition.substr(0, parseEnd);
parsePosition = parseEnd;
Serial.printf("[DICT-DBG] Parsing first chunk: 0-%u of %u, hasMore=%d\n",
parseEnd, rawDefinition.length(), hasMoreContent);
// Parse this chunk into TextBlocks
std::vector<std::shared_ptr<TextBlock>> allBlocks;
DictHtmlParser::parse(rawDefinition, UI_10_FONT_ID, renderer, textWidth,
[&allBlocks](std::shared_ptr<TextBlock> block) { allBlocks.push_back(block); });
DictHtmlParser::parse(chunk, UI_10_FONT_ID, renderer, textWidth,
[&allBlocks](std::shared_ptr<TextBlock> block) {
allBlocks.push_back(block);
});
Serial.printf("[DICT-DBG] First chunk parsed, %u TextBlocks\n", allBlocks.size());
if (allBlocks.empty()) {
notFound = true;
// Check if there's more to parse - maybe first chunk had no displayable content
if (hasMoreContent) {
// Try parsing more
parseNextChunk();
if (pages.empty()) {
notFound = true;
}
} else {
notFound = true;
}
return;
}
@ -131,6 +209,189 @@ void DictionaryResultActivity::paginateDefinition() {
if (!currentPageBlocks.empty()) {
pages.push_back(currentPageBlocks);
}
Serial.printf("[DICT-DBG] Initial pagination: %u pages\n", pages.size());
}
size_t DictionaryResultActivity::findHtmlBreakPoint(const std::string& html, size_t searchStart, size_t maxPos) {
// Search backwards from maxPos for good HTML break points
// Priority: </li>, </p>, </ol>, </ul>, </div> then any '>' then whitespace
if (maxPos >= html.length()) {
return html.length();
}
// Clamp searchStart to not exceed maxPos
if (searchStart > maxPos) {
searchStart = maxPos;
}
// Search for closing block tags (best break points)
const char* closingTags[] = {"</li>", "</p>", "</ol>", "</ul>", "</div>", "</dd>", "</dt>"};
size_t bestBreak = std::string::npos;
for (const char* tag : closingTags) {
size_t pos = html.rfind(tag, maxPos);
if (pos != std::string::npos && pos >= searchStart) {
// Found a closing tag - break after it
size_t breakAfter = pos + strlen(tag);
if (bestBreak == std::string::npos || breakAfter > bestBreak) {
bestBreak = breakAfter;
}
}
}
if (bestBreak != std::string::npos) {
return bestBreak;
}
// Fallback: search for any '>' (end of tag)
size_t tagEnd = html.rfind('>', maxPos);
if (tagEnd != std::string::npos && tagEnd >= searchStart) {
return tagEnd + 1;
}
// Last resort: search for whitespace
for (size_t i = maxPos; i >= searchStart && i != std::string::npos; i--) {
if (std::isspace(static_cast<unsigned char>(html[i]))) {
return i + 1;
}
if (i == 0) break;
}
// No good break point found - use maxPos
return maxPos;
}
void DictionaryResultActivity::parseNextChunk() {
if (!hasMoreContent || parsePosition >= rawDefinition.length()) {
hasMoreContent = false;
return;
}
Serial.printf("[DICT-DBG] parseNextChunk starting at position %u of %u\n",
parsePosition, rawDefinition.length());
// Get margins for calculating page dimensions
int marginTop, marginRight, marginBottom, marginLeft;
getDictionaryContentMargins(renderer, &marginTop, &marginRight, &marginBottom, &marginLeft);
const auto pageWidth = renderer.getScreenWidth();
const auto pageHeight = renderer.getScreenHeight();
// Calculate text area dimensions (must match paginateDefinition and render)
constexpr int headerHeight = 80;
constexpr int footerHeight = 30;
const int textMargin = marginLeft + 10;
const int textWidth = pageWidth - textMargin - marginRight - 10;
const int textHeight = pageHeight - marginTop - marginBottom - headerHeight - footerHeight;
const int lineHeight = renderer.getLineHeight(UI_10_FONT_ID);
const int linesPerPage = textHeight / lineHeight;
// Chunk size estimation (same as paginateDefinition)
constexpr size_t CHUNK_SIZE_BASE = 1500;
const size_t chunkSize = std::max(CHUNK_SIZE_BASE, static_cast<size_t>(linesPerPage * 120));
// Determine parse range for this chunk
size_t parseStart = parsePosition;
size_t parseEnd;
if (parsePosition + chunkSize >= rawDefinition.length()) {
// This will be the last chunk
parseEnd = rawDefinition.length();
hasMoreContent = false;
} else {
// Find a good break point
parseEnd = findHtmlBreakPoint(rawDefinition, parsePosition + chunkSize / 2, parsePosition + chunkSize);
hasMoreContent = (parseEnd < rawDefinition.length());
}
// Extract the chunk to parse
std::string chunk = rawDefinition.substr(parseStart, parseEnd - parseStart);
parsePosition = parseEnd;
Serial.printf("[DICT-DBG] Parsing chunk %u-%u, hasMore=%d\n", parseStart, parseEnd, hasMoreContent);
// Parse this chunk into TextBlocks
std::vector<std::shared_ptr<TextBlock>> allBlocks;
DictHtmlParser::parse(chunk, UI_10_FONT_ID, renderer, textWidth,
[&allBlocks](std::shared_ptr<TextBlock> block) {
allBlocks.push_back(block);
});
Serial.printf("[DICT-DBG] Chunk parsed, %u TextBlocks\n", allBlocks.size());
if (allBlocks.empty()) {
// No content in this chunk - try parsing more if available
if (hasMoreContent) {
parseNextChunk();
}
return;
}
// Paginate: group TextBlocks into pages based on available height
std::vector<std::shared_ptr<TextBlock>> currentPageBlocks;
int currentY = 0;
for (const auto& block : allBlocks) {
if (currentY + lineHeight > textHeight && !currentPageBlocks.empty()) {
// Page is full, start new page
pages.push_back(currentPageBlocks);
currentPageBlocks.clear();
currentY = 0;
}
currentPageBlocks.push_back(block);
currentY += lineHeight;
}
// Add remaining blocks as last page
if (!currentPageBlocks.empty()) {
pages.push_back(currentPageBlocks);
}
// Trim old pages if we exceed the limit to prevent memory exhaustion
while (static_cast<int>(pages.size()) > MAX_CACHED_PAGES && currentPage > 0) {
// Remove the oldest page and adjust indices
pages.erase(pages.begin());
currentPage--;
firstPageNumber++;
Serial.printf("[DICT-DBG] Trimmed old page, firstPageNumber now %d\n", firstPageNumber);
}
Serial.printf("[DICT-DBG] After chunk: %u cached pages (pages %d-%d)\n",
pages.size(), firstPageNumber, firstPageNumber + static_cast<int>(pages.size()) - 1);
}
void DictionaryResultActivity::reparseToPage(int targetPageNumber) {
// Re-parse from the beginning to reach an earlier page that was trimmed
// This allows backward navigation through the entire definition
Serial.printf("[DICT-DBG] reparseToPage: target=%d, clearing and re-parsing\n", targetPageNumber);
// Clear current state and start fresh
pages.clear();
parsePosition = 0;
firstPageNumber = 1;
hasMoreContent = !rawDefinition.empty();
// Parse chunks until we have the target page
while (hasMoreContent && firstPageNumber + static_cast<int>(pages.size()) - 1 < targetPageNumber) {
parseNextChunk();
}
// Now position currentPage to show the target page
if (targetPageNumber >= firstPageNumber &&
targetPageNumber < firstPageNumber + static_cast<int>(pages.size())) {
currentPage = targetPageNumber - firstPageNumber;
} else {
// Target page doesn't exist (definition is shorter than expected)
currentPage = static_cast<int>(pages.size()) - 1;
if (currentPage < 0) currentPage = 0;
}
Serial.printf("[DICT-DBG] reparseToPage done: currentPage=%d, firstPageNumber=%d, pages=%u\n",
currentPage, firstPageNumber, pages.size());
}
void DictionaryResultActivity::displayTaskLoop() {
@ -181,17 +442,29 @@ void DictionaryResultActivity::render() const {
y += lineHeight;
}
// Draw page indicator if multiple pages
if (pages.size() > 1) {
char pageIndicator[32];
snprintf(pageIndicator, sizeof(pageIndicator), "Page %d of %d", currentPage + 1, static_cast<int>(pages.size()));
// Draw page indicator if multiple pages or more content available
const bool hasMultiplePages = pages.size() > 1 || hasMoreContent || firstPageNumber > 1;
if (hasMultiplePages) {
char pageIndicator[48];
const int displayPageNum = firstPageNumber + currentPage;
const int lastKnownPage = firstPageNumber + static_cast<int>(pages.size()) - 1;
if (hasMoreContent) {
// More content to load - show "Page X of Y+" to indicate more pages coming
snprintf(pageIndicator, sizeof(pageIndicator), "Page %d of %d+", displayPageNum, lastKnownPage);
} else {
snprintf(pageIndicator, sizeof(pageIndicator), "Page %d of %d", displayPageNum, lastKnownPage);
}
renderer.drawCenteredText(SMALL_FONT_ID, pageHeight - marginBottom - 5, pageIndicator);
}
}
// Draw button hints
const char* leftHint = (pages.size() > 1 && currentPage > 0) ? "< Prev" : "";
const char* rightHint = (pages.size() > 1 && currentPage < static_cast<int>(pages.size()) - 1) ? "Next >" : "";
// Show navigation hints when there are multiple pages or more content to load
// canGoBack is true if we have previous cached pages OR if earlier pages were trimmed
const bool canGoBack = currentPage > 0 || firstPageNumber > 1;
const bool canGoForward = currentPage < static_cast<int>(pages.size()) - 1 || hasMoreContent;
const char* leftHint = canGoBack ? "< Prev" : "";
const char* rightHint = canGoForward ? "Next >" : "";
const auto labels = mappedInput.mapLabels("\xc2\xab Back", "Search", leftHint, rightHint);
renderer.drawButtonHints(UI_10_FONT_ID, labels.btn1, labels.btn2, labels.btn3, labels.btn4);

View File

@ -26,14 +26,24 @@ class DictionaryResultActivity final : public Activity {
const std::function<void()> onSearchAnother;
// Pagination - each page contains TextBlocks with styled text
// We limit cached pages to prevent memory exhaustion on long definitions
static constexpr int MAX_CACHED_PAGES = 4;
std::vector<std::vector<std::shared_ptr<TextBlock>>> pages;
int currentPage = 0;
int currentPage = 0; // Index into pages vector
int firstPageNumber = 1; // The page number of pages[0] (1-based for display)
bool notFound = false;
// Chunked parsing state - parse definition on-demand as user navigates
size_t parsePosition = 0; // Current position in rawDefinition HTML
bool hasMoreContent = false; // True if more HTML remains to parse
static void taskTrampoline(void* param);
[[noreturn]] void displayTaskLoop();
void render() const;
void paginateDefinition();
void parseNextChunk();
void reparseToPage(int targetPageNumber); // Re-parse from beginning to reach earlier page
static size_t findHtmlBreakPoint(const std::string& html, size_t searchStart, size_t maxPos);
public:
/**