Merge remote-tracking branch 'upstream/master' into feature/koreader-sync

This commit is contained in:
Justin Mitchell
2026-01-13 04:03:44 -05:00
51 changed files with 2903 additions and 740 deletions

View File

@@ -167,7 +167,10 @@ bool Epub::parseTocNavFile() const {
}
const auto navSize = tempNavFile.size();
TocNavParser navParser(contentBasePath, navSize, bookMetadataCache.get());
// Note: We can't use `contentBasePath` here as the nav file may be in a different folder to the content.opf
// and the HTMLX nav file will have hrefs relative to itself
const std::string navContentBasePath = tocNavItem.substr(0, tocNavItem.find_last_of('/') + 1);
TocNavParser navParser(navContentBasePath, navSize, bookMetadataCache.get());
if (!navParser.setup()) {
Serial.printf("[%lu] [EBP] Could not setup toc nav parser\n", millis());
@@ -345,11 +348,14 @@ const std::string& Epub::getAuthor() const {
return bookMetadataCache->coreMetadata.author;
}
std::string Epub::getCoverBmpPath() const { return cachePath + "/cover.bmp"; }
std::string Epub::getCoverBmpPath(bool cropped) const {
const auto coverFileName = "cover" + cropped ? "_crop" : "";
return cachePath + "/" + coverFileName + ".bmp";
}
bool Epub::generateCoverBmp() const {
bool Epub::generateCoverBmp(bool cropped) const {
// Already generated, return true
if (SdMan.exists(getCoverBmpPath().c_str())) {
if (SdMan.exists(getCoverBmpPath(cropped).c_str())) {
return true;
}
@@ -381,7 +387,7 @@ bool Epub::generateCoverBmp() const {
}
FsFile coverBmp;
if (!SdMan.openFileForWrite("EBP", getCoverBmpPath(), coverBmp)) {
if (!SdMan.openFileForWrite("EBP", getCoverBmpPath(cropped), coverBmp)) {
coverJpg.close();
return false;
}
@@ -392,7 +398,7 @@ bool Epub::generateCoverBmp() const {
if (!success) {
Serial.printf("[%lu] [EBP] Failed to generate BMP from JPG cover image\n", millis());
SdMan.remove(getCoverBmpPath().c_str());
SdMan.remove(getCoverBmpPath(cropped).c_str());
}
Serial.printf("[%lu] [EBP] Generated BMP from JPG cover image, success: %s\n", millis(), success ? "yes" : "no");
return success;

View File

@@ -44,8 +44,8 @@ class Epub {
const std::string& getPath() const;
const std::string& getTitle() const;
const std::string& getAuthor() const;
std::string getCoverBmpPath() const;
bool generateCoverBmp() const;
std::string getCoverBmpPath(bool cropped = false) const;
bool generateCoverBmp(bool cropped = false) const;
uint8_t* readItemContentsToBytes(const std::string& itemHref, size_t* size = nullptr,
bool trailingNullByte = false) const;
bool readItemContentsToStream(const std::string& itemHref, Print& out, size_t chunkSize) const;

View File

@@ -9,7 +9,7 @@
#include "FsHelpers.h"
namespace {
constexpr uint8_t BOOK_CACHE_VERSION = 3;
constexpr uint8_t BOOK_CACHE_VERSION = 4;
constexpr char bookBinFile[] = "/book.bin";
constexpr char tmpSpineBinFile[] = "/spine.bin.tmp";
constexpr char tmpTocBinFile[] = "/toc.bin.tmp";

View File

@@ -1,163 +0,0 @@
// from
// https://github.com/atomic14/diy-esp32-epub-reader/blob/2c2f57fdd7e2a788d14a0bcb26b9e845a47aac42/lib/Epub/RubbishHtmlParser/htmlEntities.cpp
#include "htmlEntities.h"
#include <cstring>
#include <unordered_map>
const int MAX_ENTITY_LENGTH = 10;
// Use book: entities_ww2.epub to test this (Page 7: Entities parser test)
// Note the supported keys are only in lowercase
// Store the mappings in a unordered hash map
static std::unordered_map<std::string, std::string> entity_lookup(
{{"&quot;", "\""}, {"&frasl;", ""}, {"&amp;", "&"}, {"&lt;", "<"}, {"&gt;", ">"},
{"&Agrave;", "À"}, {"&Aacute;", "Á"}, {"&Acirc;", "Â"}, {"&Atilde;", "Ã"}, {"&Auml;", "Ä"},
{"&Aring;", "Å"}, {"&AElig;", "Æ"}, {"&Ccedil;", "Ç"}, {"&Egrave;", "È"}, {"&Eacute;", "É"},
{"&Ecirc;", "Ê"}, {"&Euml;", "Ë"}, {"&Igrave;", "Ì"}, {"&Iacute;", "Í"}, {"&Icirc;", "Î"},
{"&Iuml;", "Ï"}, {"&ETH;", "Ð"}, {"&Ntilde;", "Ñ"}, {"&Ograve;", "Ò"}, {"&Oacute;", "Ó"},
{"&Ocirc;", "Ô"}, {"&Otilde;", "Õ"}, {"&Ouml;", "Ö"}, {"&Oslash;", "Ø"}, {"&Ugrave;", "Ù"},
{"&Uacute;", "Ú"}, {"&Ucirc;", "Û"}, {"&Uuml;", "Ü"}, {"&Yacute;", "Ý"}, {"&THORN;", "Þ"},
{"&szlig;", "ß"}, {"&agrave;", "à"}, {"&aacute;", "á"}, {"&acirc;", "â"}, {"&atilde;", "ã"},
{"&auml;", "ä"}, {"&aring;", "å"}, {"&aelig;", "æ"}, {"&ccedil;", "ç"}, {"&egrave;", "è"},
{"&eacute;", "é"}, {"&ecirc;", "ê"}, {"&euml;", "ë"}, {"&igrave;", "ì"}, {"&iacute;", "í"},
{"&icirc;", "î"}, {"&iuml;", "ï"}, {"&eth;", "ð"}, {"&ntilde;", "ñ"}, {"&ograve;", "ò"},
{"&oacute;", "ó"}, {"&ocirc;", "ô"}, {"&otilde;", "õ"}, {"&ouml;", "ö"}, {"&oslash;", "ø"},
{"&ugrave;", "ù"}, {"&uacute;", "ú"}, {"&ucirc;", "û"}, {"&uuml;", "ü"}, {"&yacute;", "ý"},
{"&thorn;", "þ"}, {"&yuml;", "ÿ"}, {"&nbsp;", " "}, {"&iexcl;", "¡"}, {"&cent;", "¢"},
{"&pound;", "£"}, {"&curren;", "¤"}, {"&yen;", "¥"}, {"&brvbar;", "¦"}, {"&sect;", "§"},
{"&uml;", "¨"}, {"&copy;", "©"}, {"&ordf;", "ª"}, {"&laquo;", "«"}, {"&not;", "¬"},
{"&shy;", "­"}, {"&reg;", "®"}, {"&macr;", "¯"}, {"&deg;", "°"}, {"&plusmn;", "±"},
{"&sup2;", "²"}, {"&sup3;", "³"}, {"&acute;", "´"}, {"&micro;", "µ"}, {"&para;", ""},
{"&cedil;", "¸"}, {"&sup1;", "¹"}, {"&ordm;", "º"}, {"&raquo;", "»"}, {"&frac14;", "¼"},
{"&frac12;", "½"}, {"&frac34;", "¾"}, {"&iquest;", "¿"}, {"&times;", "×"}, {"&divide;", "÷"},
{"&forall;", ""}, {"&part;", ""}, {"&exist;", ""}, {"&empty;", ""}, {"&nabla;", ""},
{"&isin;", ""}, {"&notin;", ""}, {"&ni;", ""}, {"&prod;", ""}, {"&sum;", ""},
{"&minus;", ""}, {"&lowast;", ""}, {"&radic;", ""}, {"&prop;", ""}, {"&infin;", ""},
{"&ang;", ""}, {"&and;", ""}, {"&or;", ""}, {"&cap;", ""}, {"&cup;", ""},
{"&int;", ""}, {"&there4;", ""}, {"&sim;", ""}, {"&cong;", ""}, {"&asymp;", ""},
{"&ne;", ""}, {"&equiv;", ""}, {"&le;", ""}, {"&ge;", ""}, {"&sub;", ""},
{"&sup;", ""}, {"&nsub;", ""}, {"&sube;", ""}, {"&supe;", ""}, {"&oplus;", ""},
{"&otimes;", ""}, {"&perp;", ""}, {"&sdot;", ""}, {"&Alpha;", "Α"}, {"&Beta;", "Β"},
{"&Gamma;", "Γ"}, {"&Delta;", "Δ"}, {"&Epsilon;", "Ε"}, {"&Zeta;", "Ζ"}, {"&Eta;", "Η"},
{"&Theta;", "Θ"}, {"&Iota;", "Ι"}, {"&Kappa;", "Κ"}, {"&Lambda;", "Λ"}, {"&Mu;", "Μ"},
{"&Nu;", "Ν"}, {"&Xi;", "Ξ"}, {"&Omicron;", "Ο"}, {"&Pi;", "Π"}, {"&Rho;", "Ρ"},
{"&Sigma;", "Σ"}, {"&Tau;", "Τ"}, {"&Upsilon;", "Υ"}, {"&Phi;", "Φ"}, {"&Chi;", "Χ"},
{"&Psi;", "Ψ"}, {"&Omega;", "Ω"}, {"&alpha;", "α"}, {"&beta;", "β"}, {"&gamma;", "γ"},
{"&delta;", "δ"}, {"&epsilon;", "ε"}, {"&zeta;", "ζ"}, {"&eta;", "η"}, {"&theta;", "θ"},
{"&iota;", "ι"}, {"&kappa;", "κ"}, {"&lambda;", "λ"}, {"&mu;", "μ"}, {"&nu;", "ν"},
{"&xi;", "ξ"}, {"&omicron;", "ο"}, {"&pi;", "π"}, {"&rho;", "ρ"}, {"&sigmaf;", "ς"},
{"&sigma;", "σ"}, {"&tau;", "τ"}, {"&upsilon;", "υ"}, {"&phi;", "φ"}, {"&chi;", "χ"},
{"&psi;", "ψ"}, {"&omega;", "ω"}, {"&thetasym;", "ϑ"}, {"&upsih;", "ϒ"}, {"&piv;", "ϖ"},
{"&OElig;", "Œ"}, {"&oelig;", "œ"}, {"&Scaron;", "Š"}, {"&scaron;", "š"}, {"&Yuml;", "Ÿ"},
{"&fnof;", "ƒ"}, {"&circ;", "ˆ"}, {"&tilde;", "˜"}, {"&ensp;", ""}, {"&emsp;", ""},
{"&thinsp;", ""}, {"&zwnj;", ""}, {"&zwj;", ""}, {"&lrm;", ""}, {"&rlm;", ""},
{"&ndash;", ""}, {"&mdash;", ""}, {"&lsquo;", ""}, {"&rsquo;", ""}, {"&sbquo;", ""},
{"&ldquo;", ""}, {"&rdquo;", ""}, {"&bdquo;", ""}, {"&dagger;", ""}, {"&Dagger;", ""},
{"&bull;", ""}, {"&hellip;", ""}, {"&permil;", ""}, {"&prime;", ""}, {"&Prime;", ""},
{"&lsaquo;", ""}, {"&rsaquo;", ""}, {"&oline;", ""}, {"&euro;", ""}, {"&trade;", ""},
{"&larr;", ""}, {"&uarr;", ""}, {"&rarr;", ""}, {"&darr;", ""}, {"&harr;", ""},
{"&crarr;", ""}, {"&lceil;", ""}, {"&rceil;", ""}, {"&lfloor;", ""}, {"&rfloor;", ""},
{"&loz;", ""}, {"&spades;", ""}, {"&clubs;", ""}, {"&hearts;", ""}, {"&diams;", ""}});
// converts from a unicode code point to the utf8 equivalent
void convert_to_utf8(const int code, std::string& res) {
// convert to a utf8 sequence
if (code < 0x80) {
res += static_cast<char>(code);
} else if (code < 0x800) {
res += static_cast<char>(0xc0 | (code >> 6));
res += static_cast<char>(0x80 | (code & 0x3f));
} else if (code < 0x10000) {
res += static_cast<char>(0xe0 | (code >> 12));
res += static_cast<char>(0x80 | ((code >> 6) & 0x3f));
res += static_cast<char>(0x80 | (code & 0x3f));
} else if (code < 0x200000) {
res += static_cast<char>(0xf0 | (code >> 18));
res += static_cast<char>(0x80 | ((code >> 12) & 0x3f));
res += static_cast<char>(0x80 | ((code >> 6) & 0x3f));
res += static_cast<char>(0x80 | (code & 0x3f));
} else if (code < 0x4000000) {
res += static_cast<char>(0xf8 | (code >> 24));
res += static_cast<char>(0x80 | ((code >> 18) & 0x3f));
res += static_cast<char>(0x80 | ((code >> 12) & 0x3f));
res += static_cast<char>(0x80 | ((code >> 6) & 0x3f));
res += static_cast<char>(0x80 | (code & 0x3f));
} else if (code < 0x80000000) {
res += static_cast<char>(0xfc | (code >> 30));
res += static_cast<char>(0x80 | ((code >> 24) & 0x3f));
res += static_cast<char>(0x80 | ((code >> 18) & 0x3f));
res += static_cast<char>(0x80 | ((code >> 12) & 0x3f));
res += static_cast<char>(0x80 | ((code >> 6) & 0x3f));
}
}
// handles numeric entities - e.g. &#1234; or &#x1234;
bool process_numeric_entity(const std::string& entity, std::string& res) {
int code = 0;
// is it hex?
if (entity[2] == 'x' || entity[2] == 'X') {
// parse the hex code
code = strtol(entity.substr(3, entity.size() - 3).c_str(), nullptr, 16);
} else {
code = strtol(entity.substr(2, entity.size() - 3).c_str(), nullptr, 10);
}
if (code != 0) {
// special handling for nbsp
if (code == 0xA0) {
res += " ";
} else {
convert_to_utf8(code, res);
}
return true;
}
return false;
}
// handles named entities - e.g. &amp;
bool process_string_entity(const std::string& entity, std::string& res) {
// it's a named entity - find it in the lookup table
// find it in the map
const auto it = entity_lookup.find(entity);
if (it != entity_lookup.end()) {
res += it->second;
return true;
}
return false;
}
// replace all the entities in the string
std::string replaceHtmlEntities(const char* text) {
std::string res;
res.reserve(strlen(text));
for (int i = 0; i < strlen(text); ++i) {
bool flag = false;
// do we have a potential entity?
if (text[i] == '&') {
// find the end of the entity
int j = i + 1;
while (j < strlen(text) && text[j] != ';' && j - i < MAX_ENTITY_LENGTH) {
j++;
}
if (j - i > 2) {
char entity[j - i + 1];
strncpy(entity, text + i, j - i);
// is it a numeric code?
if (entity[1] == '#') {
flag = process_numeric_entity(entity, res);
} else {
flag = process_string_entity(entity, res);
}
// skip past the entity if we successfully decoded it
if (flag) {
i = j;
}
}
}
if (!flag) {
res += text[i];
}
}
return res;
}

View File

@@ -1,7 +0,0 @@
// from
// https://github.com/atomic14/diy-esp32-epub-reader/blob/2c2f57fdd7e2a788d14a0bcb26b9e845a47aac42/lib/Epub/RubbishHtmlParser/htmlEntities.cpp
#pragma once
#include <string>
std::string replaceHtmlEntities(const char* text);

View File

@@ -6,7 +6,6 @@
#include <expat.h>
#include "../Page.h"
#include "../htmlEntities.h"
const char* HEADER_TAGS[] = {"h1", "h2", "h3", "h4", "h5", "h6"};
constexpr int NUM_HEADER_TAGS = sizeof(HEADER_TAGS) / sizeof(HEADER_TAGS[0]);
@@ -130,7 +129,7 @@ void XMLCALL ChapterHtmlSlimParser::characterData(void* userData, const XML_Char
// Currently looking at whitespace, if there's anything in the partWordBuffer, flush it
if (self->partWordBufferIndex > 0) {
self->partWordBuffer[self->partWordBufferIndex] = '\0';
self->currentTextBlock->addWord(std::move(replaceHtmlEntities(self->partWordBuffer)), fontStyle);
self->currentTextBlock->addWord(self->partWordBuffer, fontStyle);
self->partWordBufferIndex = 0;
}
// Skip the whitespace char
@@ -155,7 +154,7 @@ void XMLCALL ChapterHtmlSlimParser::characterData(void* userData, const XML_Char
// If we're about to run out of space, then cut the word off and start a new one
if (self->partWordBufferIndex >= MAX_WORD_SIZE) {
self->partWordBuffer[self->partWordBufferIndex] = '\0';
self->currentTextBlock->addWord(std::move(replaceHtmlEntities(self->partWordBuffer)), fontStyle);
self->currentTextBlock->addWord(self->partWordBuffer, fontStyle);
self->partWordBufferIndex = 0;
}
@@ -197,7 +196,7 @@ void XMLCALL ChapterHtmlSlimParser::endElement(void* userData, const XML_Char* n
}
self->partWordBuffer[self->partWordBufferIndex] = '\0';
self->currentTextBlock->addWord(std::move(replaceHtmlEntities(self->partWordBuffer)), fontStyle);
self->currentTextBlock->addWord(self->partWordBuffer, fontStyle);
self->partWordBufferIndex = 0;
}
}

View File

@@ -167,7 +167,7 @@ void XMLCALL ContentOpfParser::startElement(void* userData, const XML_Char* name
if (strcmp(atts[i], "id") == 0) {
itemId = atts[i + 1];
} else if (strcmp(atts[i], "href") == 0) {
href = self->baseContentPath + atts[i + 1];
href = FsHelpers::normalisePath(self->baseContentPath + atts[i + 1]);
} else if (strcmp(atts[i], "media-type") == 0) {
mediaType = atts[i + 1];
} else if (strcmp(atts[i], "properties") == 0) {
@@ -243,7 +243,7 @@ void XMLCALL ContentOpfParser::startElement(void* userData, const XML_Char* name
break;
}
} else if (strcmp(atts[i], "href") == 0) {
textHref = self->baseContentPath + atts[i + 1];
textHref = FsHelpers::normalisePath(self->baseContentPath + atts[i + 1]);
}
}
if ((type == "text" || (type == "start" && !self->textReferenceHref.empty())) && (textHref.length() > 0)) {

View File

@@ -1,5 +1,6 @@
#include "TocNavParser.h"
#include <FsHelpers.h>
#include <HardwareSerial.h>
#include "../BookMetadataCache.h"
@@ -140,7 +141,7 @@ void XMLCALL TocNavParser::endElement(void* userData, const XML_Char* name) {
if (strcmp(name, "a") == 0 && self->state == IN_ANCHOR) {
// Create TOC entry when closing anchor tag (we have all data now)
if (!self->currentLabel.empty() && !self->currentHref.empty()) {
std::string href = self->baseContentPath + self->currentHref;
std::string href = FsHelpers::normalisePath(self->baseContentPath + self->currentHref);
std::string anchor;
const size_t pos = href.find('#');

View File

@@ -1,5 +1,6 @@
#include "TocNcxParser.h"
#include <FsHelpers.h>
#include <HardwareSerial.h>
#include "../BookMetadataCache.h"
@@ -159,7 +160,7 @@ void XMLCALL TocNcxParser::endElement(void* userData, const XML_Char* name) {
// This is the safest place to push the data, assuming <navLabel> always comes before <content>.
// NCX spec says navLabel comes before content.
if (!self->currentLabel.empty() && !self->currentSrc.empty()) {
std::string href = self->baseContentPath + self->currentSrc;
std::string href = FsHelpers::normalisePath(self->baseContentPath + self->currentSrc);
std::string anchor;
const size_t pos = href.find('#');

View File

@@ -8,119 +8,15 @@
// ============================================================================
// Note: For cover images, dithering is done in JpegToBmpConverter.cpp
// This file handles BMP reading - use simple quantization to avoid double-dithering
constexpr bool USE_FLOYD_STEINBERG = false; // Disabled - dithering done at JPEG conversion
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
// Brightness adjustments:
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 20; // Brightness offset (0-50), only if USE_BRIGHTNESS=true
constexpr bool GAMMA_CORRECTION = false; // Gamma curve, only if USE_BRIGHTNESS=true
constexpr bool USE_ATKINSON = true; // Use Atkinson dithering instead of Floyd-Steinberg
// ============================================================================
// Integer approximation of gamma correction (brightens midtones)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
const int product = gray * 255;
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
}
// Simple quantization without dithering - just divide into 4 levels
static inline uint8_t quantizeSimple(int gray) {
if (USE_BRIGHTNESS) {
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
gray = applyGamma(gray);
}
return static_cast<uint8_t>(gray >> 6);
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
static inline uint8_t quantizeNoise(int gray, int x, int y) {
if (USE_BRIGHTNESS) {
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
gray = applyGamma(gray);
}
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24);
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function
static inline uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}
// Floyd-Steinberg quantization with error diffusion and serpentine scanning
// Returns 2-bit value (0-3) and updates error buffers
static inline uint8_t quantizeFloydSteinberg(int gray, int x, int width, int16_t* errorCurRow, int16_t* errorNextRow,
bool reverseDir) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!reverseDir) {
// Left to right
errorCurRow[x + 2] += (error * 7) >> 4; // Right: 7/16
errorNextRow[x] += (error * 3) >> 4; // Bottom-left: 3/16
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
errorNextRow[x + 2] += (error) >> 4; // Bottom-right: 1/16
} else {
// Right to left (mirrored)
errorCurRow[x] += (error * 7) >> 4; // Left: 7/16
errorNextRow[x + 2] += (error * 3) >> 4; // Bottom-right: 3/16
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
errorNextRow[x] += (error) >> 4; // Bottom-left: 1/16
}
return quantized;
}
Bitmap::~Bitmap() {
delete[] errorCurRow;
delete[] errorNextRow;
delete atkinsonDitherer;
delete fsDitherer;
}
uint16_t Bitmap::readLE16(FsFile& f) {
@@ -244,13 +140,14 @@ BmpReaderError Bitmap::parseHeaders() {
return BmpReaderError::SeekPixelDataFailed;
}
// Allocate Floyd-Steinberg error buffers if enabled
if (USE_FLOYD_STEINBERG) {
delete[] errorCurRow;
delete[] errorNextRow;
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
prevRowY = -1;
// Create ditherer if enabled (only for 2-bit output)
// Use OUTPUT dimensions for dithering (after prescaling)
if (bpp > 2 && dithering) {
if (USE_ATKINSON) {
atkinsonDitherer = new AtkinsonDitherer(width);
} else {
fsDitherer = new FloydSteinbergDitherer(width);
}
}
return BmpReaderError::Ok;
@@ -261,17 +158,6 @@ BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const {
// Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes'
if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow;
// Handle Floyd-Steinberg error buffer progression
const bool useFS = USE_FLOYD_STEINBERG && errorCurRow && errorNextRow;
if (useFS) {
if (prevRowY != -1) {
// Sequential access - swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
}
}
prevRowY += 1;
uint8_t* outPtr = data;
@@ -282,12 +168,18 @@ BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const {
// Helper lambda to pack 2bpp color into the output stream
auto packPixel = [&](const uint8_t lum) {
uint8_t color;
if (useFS) {
// Floyd-Steinberg error diffusion
color = quantizeFloydSteinberg(lum, currentX, width, errorCurRow, errorNextRow, false);
if (atkinsonDitherer) {
color = atkinsonDitherer->processPixel(adjustPixel(lum), currentX);
} else if (fsDitherer) {
color = fsDitherer->processPixel(adjustPixel(lum), currentX);
} else {
// Simple quantization or noise dithering
color = quantize(lum, currentX, prevRowY);
if (bpp > 2) {
// Simple quantization or noise dithering
color = quantize(adjustPixel(lum), currentX, prevRowY);
} else {
// do not quantize 2bpp image
color = static_cast<uint8_t>(lum >> 6);
}
}
currentOutByte |= (color << bitShift);
if (bitShift == 0) {
@@ -345,6 +237,11 @@ BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const {
return BmpReaderError::UnsupportedBpp;
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
// Flush remaining bits if width is not a multiple of 4
if (bitShift != 6) *outPtr = currentOutByte;
@@ -356,12 +253,9 @@ BmpReaderError Bitmap::rewindToData() const {
return BmpReaderError::SeekPixelDataFailed;
}
// Reset Floyd-Steinberg error buffers when rewinding
if (USE_FLOYD_STEINBERG && errorCurRow && errorNextRow) {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
prevRowY = -1;
}
// Reset dithering when rewinding
if (fsDitherer) fsDitherer->reset();
if (atkinsonDitherer) atkinsonDitherer->reset();
return BmpReaderError::Ok;
}

View File

@@ -2,6 +2,10 @@
#include <SdFat.h>
#include <cstdint>
#include "BitmapHelpers.h"
enum class BmpReaderError : uint8_t {
Ok = 0,
FileInvalid,
@@ -28,7 +32,7 @@ class Bitmap {
public:
static const char* errorToString(BmpReaderError err);
explicit Bitmap(FsFile& file) : file(file) {}
explicit Bitmap(FsFile& file, bool dithering = false) : file(file), dithering(dithering) {}
~Bitmap();
BmpReaderError parseHeaders();
BmpReaderError readNextRow(uint8_t* data, uint8_t* rowBuffer) const;
@@ -44,6 +48,7 @@ class Bitmap {
static uint32_t readLE32(FsFile& f);
FsFile& file;
bool dithering = false;
int width = 0;
int height = 0;
bool topDown = false;
@@ -56,4 +61,7 @@ class Bitmap {
mutable int16_t* errorCurRow = nullptr;
mutable int16_t* errorNextRow = nullptr;
mutable int prevRowY = -1; // Track row progression for error propagation
mutable AtkinsonDitherer* atkinsonDitherer = nullptr;
mutable FloydSteinbergDitherer* fsDitherer = nullptr;
};

View File

@@ -0,0 +1,90 @@
#include "BitmapHelpers.h"
#include <cstdint>
// Brightness/Contrast adjustments:
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
constexpr bool GAMMA_CORRECTION = false; // Gamma curve (brightens midtones)
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
// Integer approximation of gamma correction (brightens midtones)
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
// Fast integer square root approximation for gamma ~0.5 (brightening)
// This brightens dark/mid tones while preserving highlights
const int product = gray * 255;
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
}
// Apply contrast adjustment around midpoint (128)
// factor > 1.0 increases contrast, < 1.0 decreases
static inline int applyContrast(int gray) {
// Integer-based contrast: (gray - 128) * factor + 128
// Using fixed-point: factor 1.15 ≈ 115/100
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
return adjusted;
}
// Combined brightness/contrast/gamma adjustment
int adjustPixel(int gray) {
if (!USE_BRIGHTNESS) return gray;
// Order: contrast first, then brightness, then gamma
gray = applyContrast(gray);
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
if (gray < 0) gray = 0;
gray = applyGamma(gray);
return gray;
}
// Simple quantization without dithering - divide into 4 levels
// The thresholds are fine-tuned to the X4 display
uint8_t quantizeSimple(int gray) {
if (gray < 45) {
return 0;
} else if (gray < 70) {
return 1;
} else if (gray < 140) {
return 2;
} else {
return 3;
}
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
// Uses integer hash to generate pseudo-random threshold per pixel
static inline uint8_t quantizeNoise(int gray, int x, int y) {
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24);
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function - selects between methods based on config
uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}

View File

@@ -0,0 +1,233 @@
#pragma once
#include <cstring>
// Helper functions
uint8_t quantize(int gray, int x, int y);
uint8_t quantizeSimple(int gray);
int adjustPixel(int gray);
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
// Error distribution pattern:
// X 1/8 1/8
// 1/8 1/8 1/8
// 1/8
// Less error buildup = fewer artifacts than Floyd-Steinberg
class AtkinsonDitherer {
public:
explicit AtkinsonDitherer(int width) : width(width) {
errorRow0 = new int16_t[width + 4](); // Current row
errorRow1 = new int16_t[width + 4](); // Next row
errorRow2 = new int16_t[width + 4](); // Row after next
}
~AtkinsonDitherer() {
delete[] errorRow0;
delete[] errorRow1;
delete[] errorRow2;
}
// **1. EXPLICITLY DELETE THE COPY CONSTRUCTOR**
AtkinsonDitherer(const AtkinsonDitherer& other) = delete;
// **2. EXPLICITLY DELETE THE COPY ASSIGNMENT OPERATOR**
AtkinsonDitherer& operator=(const AtkinsonDitherer& other) = delete;
uint8_t processPixel(int gray, int x) {
// Add accumulated error
int adjusted = gray + errorRow0[x + 2];
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels
uint8_t quantized;
int quantizedValue;
if (false) { // original thresholds
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
} else { // fine-tuned to X4 eink display
if (adjusted < 30) {
quantized = 0;
quantizedValue = 15;
} else if (adjusted < 50) {
quantized = 1;
quantizedValue = 30;
} else if (adjusted < 140) {
quantized = 2;
quantizedValue = 80;
} else {
quantized = 3;
quantizedValue = 210;
}
}
// Calculate error (only distribute 6/8 = 75%)
int error = (adjusted - quantizedValue) >> 3; // error/8
// Distribute 1/8 to each of 6 neighbors
errorRow0[x + 3] += error; // Right
errorRow0[x + 4] += error; // Right+1
errorRow1[x + 1] += error; // Bottom-left
errorRow1[x + 2] += error; // Bottom
errorRow1[x + 3] += error; // Bottom-right
errorRow2[x + 2] += error; // Two rows down
return quantized;
}
void nextRow() {
int16_t* temp = errorRow0;
errorRow0 = errorRow1;
errorRow1 = errorRow2;
errorRow2 = temp;
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
void reset() {
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
private:
int width;
int16_t* errorRow0;
int16_t* errorRow1;
int16_t* errorRow2;
};
// Floyd-Steinberg error diffusion dithering with serpentine scanning
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
// Error distribution pattern (left-to-right):
// X 7/16
// 3/16 5/16 1/16
// Error distribution pattern (right-to-left, mirrored):
// 1/16 5/16 3/16
// 7/16 X
class FloydSteinbergDitherer {
public:
explicit FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
}
~FloydSteinbergDitherer() {
delete[] errorCurRow;
delete[] errorNextRow;
}
// **1. EXPLICITLY DELETE THE COPY CONSTRUCTOR**
FloydSteinbergDitherer(const FloydSteinbergDitherer& other) = delete;
// **2. EXPLICITLY DELETE THE COPY ASSIGNMENT OPERATOR**
FloydSteinbergDitherer& operator=(const FloydSteinbergDitherer& other) = delete;
// Process a single pixel and return quantized 2-bit value
// x is the logical x position (0 to width-1), direction handled internally
uint8_t processPixel(int gray, int x) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (false) { // original thresholds
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
} else { // fine-tuned to X4 eink display
if (adjusted < 30) {
quantized = 0;
quantizedValue = 15;
} else if (adjusted < 50) {
quantized = 1;
quantizedValue = 30;
} else if (adjusted < 140) {
quantized = 2;
quantizedValue = 80;
} else {
quantized = 3;
quantizedValue = 210;
}
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!isReverseRow()) {
// Left to right: standard distribution
// Right: 7/16
errorCurRow[x + 2] += (error * 7) >> 4;
// Bottom-left: 3/16
errorNextRow[x] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-right: 1/16
errorNextRow[x + 2] += (error) >> 4;
} else {
// Right to left: mirrored distribution
// Left: 7/16
errorCurRow[x] += (error * 7) >> 4;
// Bottom-right: 3/16
errorNextRow[x + 2] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-left: 1/16
errorNextRow[x] += (error) >> 4;
}
return quantized;
}
// Call at the end of each row to swap buffers
void nextRow() {
// Swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
// Clear the next row buffer
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount++;
}
// Check if current row should be processed in reverse
bool isReverseRow() const { return (rowCount & 1) != 0; }
// Reset for a new image or MCU block
void reset() {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount = 0;
}
private:
int width;
int rowCount;
int16_t* errorCurRow;
int16_t* errorNextRow;
};

View File

@@ -7,6 +7,8 @@
#include <cstdio>
#include <cstring>
#include "BitmapHelpers.h"
// Context structure for picojpeg callback
struct JpegReadContext {
FsFile& file;
@@ -23,282 +25,12 @@ constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantizati
constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
// Brightness/Contrast adjustments:
constexpr bool USE_BRIGHTNESS = true; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
constexpr bool GAMMA_CORRECTION = true; // Gamma curve (brightens midtones)
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
// ============================================================================
// Integer approximation of gamma correction (brightens midtones)
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
// Fast integer square root approximation for gamma ~0.5 (brightening)
// This brightens dark/mid tones while preserving highlights
const int product = gray * 255;
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
}
// Apply contrast adjustment around midpoint (128)
// factor > 1.0 increases contrast, < 1.0 decreases
static inline int applyContrast(int gray) {
// Integer-based contrast: (gray - 128) * factor + 128
// Using fixed-point: factor 1.15 ≈ 115/100
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
return adjusted;
}
// Combined brightness/contrast/gamma adjustment
static inline int adjustPixel(int gray) {
if (!USE_BRIGHTNESS) return gray;
// Order: contrast first, then brightness, then gamma
gray = applyContrast(gray);
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
if (gray < 0) gray = 0;
gray = applyGamma(gray);
return gray;
}
// Simple quantization without dithering - just divide into 4 levels
static inline uint8_t quantizeSimple(int gray) {
gray = adjustPixel(gray);
// Simple 2-bit quantization: 0-63=0, 64-127=1, 128-191=2, 192-255=3
return static_cast<uint8_t>(gray >> 6);
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
// Uses integer hash to generate pseudo-random threshold per pixel
static inline uint8_t quantizeNoise(int gray, int x, int y) {
gray = adjustPixel(gray);
// Generate noise threshold using integer hash (no regular pattern to alias)
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24); // 0-255
// Map gray (0-255) to 4 levels with dithering
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function - selects between methods based on config
static inline uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
// Error distribution pattern:
// X 1/8 1/8
// 1/8 1/8 1/8
// 1/8
// Less error buildup = fewer artifacts than Floyd-Steinberg
class AtkinsonDitherer {
public:
AtkinsonDitherer(int width) : width(width) {
errorRow0 = new int16_t[width + 4](); // Current row
errorRow1 = new int16_t[width + 4](); // Next row
errorRow2 = new int16_t[width + 4](); // Row after next
}
~AtkinsonDitherer() {
delete[] errorRow0;
delete[] errorRow1;
delete[] errorRow2;
}
uint8_t processPixel(int gray, int x) {
// Apply brightness/contrast/gamma adjustments
gray = adjustPixel(gray);
// Add accumulated error
int adjusted = gray + errorRow0[x + 2];
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error (only distribute 6/8 = 75%)
int error = (adjusted - quantizedValue) >> 3; // error/8
// Distribute 1/8 to each of 6 neighbors
errorRow0[x + 3] += error; // Right
errorRow0[x + 4] += error; // Right+1
errorRow1[x + 1] += error; // Bottom-left
errorRow1[x + 2] += error; // Bottom
errorRow1[x + 3] += error; // Bottom-right
errorRow2[x + 2] += error; // Two rows down
return quantized;
}
void nextRow() {
int16_t* temp = errorRow0;
errorRow0 = errorRow1;
errorRow1 = errorRow2;
errorRow2 = temp;
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
void reset() {
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
private:
int width;
int16_t* errorRow0;
int16_t* errorRow1;
int16_t* errorRow2;
};
// Floyd-Steinberg error diffusion dithering with serpentine scanning
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
// Error distribution pattern (left-to-right):
// X 7/16
// 3/16 5/16 1/16
// Error distribution pattern (right-to-left, mirrored):
// 1/16 5/16 3/16
// 7/16 X
class FloydSteinbergDitherer {
public:
FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
}
~FloydSteinbergDitherer() {
delete[] errorCurRow;
delete[] errorNextRow;
}
// Process a single pixel and return quantized 2-bit value
// x is the logical x position (0 to width-1), direction handled internally
uint8_t processPixel(int gray, int x, bool reverseDirection) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!reverseDirection) {
// Left to right: standard distribution
// Right: 7/16
errorCurRow[x + 2] += (error * 7) >> 4;
// Bottom-left: 3/16
errorNextRow[x] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-right: 1/16
errorNextRow[x + 2] += (error) >> 4;
} else {
// Right to left: mirrored distribution
// Left: 7/16
errorCurRow[x] += (error * 7) >> 4;
// Bottom-right: 3/16
errorNextRow[x + 2] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-left: 1/16
errorNextRow[x] += (error) >> 4;
}
return quantized;
}
// Call at the end of each row to swap buffers
void nextRow() {
// Swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
// Clear the next row buffer
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount++;
}
// Check if current row should be processed in reverse
bool isReverseRow() const { return (rowCount & 1) != 0; }
// Reset for a new image or MCU block
void reset() {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount = 0;
}
private:
int width;
int rowCount;
int16_t* errorCurRow;
int16_t* errorNextRow;
};
inline void write16(Print& out, const uint16_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
@@ -623,12 +355,12 @@ bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
const uint8_t gray = adjustPixel(mcuRowBuffer[bufferY * imageInfo.m_width + x]);
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
twoBit = fsDitherer->processPixel(gray, x);
} else {
twoBit = quantize(gray, x, y);
}
@@ -686,12 +418,12 @@ bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
const uint8_t gray = adjustPixel((rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0);
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
twoBit = fsDitherer->processPixel(gray, x);
} else {
twoBit = quantize(gray, x, currentOutY);
}

View File

@@ -0,0 +1,219 @@
#include "OpdsParser.h"
#include <HardwareSerial.h>
#include <cstring>
OpdsParser::~OpdsParser() {
if (parser) {
XML_StopParser(parser, XML_FALSE);
XML_SetElementHandler(parser, nullptr, nullptr);
XML_SetCharacterDataHandler(parser, nullptr);
XML_ParserFree(parser);
parser = nullptr;
}
}
bool OpdsParser::parse(const char* xmlData, const size_t length) {
clear();
parser = XML_ParserCreate(nullptr);
if (!parser) {
Serial.printf("[%lu] [OPDS] Couldn't allocate memory for parser\n", millis());
return false;
}
XML_SetUserData(parser, this);
XML_SetElementHandler(parser, startElement, endElement);
XML_SetCharacterDataHandler(parser, characterData);
// Parse in chunks to avoid large buffer allocations
const char* currentPos = xmlData;
size_t remaining = length;
constexpr size_t chunkSize = 1024;
while (remaining > 0) {
void* const buf = XML_GetBuffer(parser, chunkSize);
if (!buf) {
Serial.printf("[%lu] [OPDS] Couldn't allocate memory for buffer\n", millis());
XML_ParserFree(parser);
parser = nullptr;
return false;
}
const size_t toRead = remaining < chunkSize ? remaining : chunkSize;
memcpy(buf, currentPos, toRead);
const bool isFinal = (remaining == toRead);
if (XML_ParseBuffer(parser, static_cast<int>(toRead), isFinal) == XML_STATUS_ERROR) {
Serial.printf("[%lu] [OPDS] Parse error at line %lu: %s\n", millis(), XML_GetCurrentLineNumber(parser),
XML_ErrorString(XML_GetErrorCode(parser)));
XML_ParserFree(parser);
parser = nullptr;
return false;
}
currentPos += toRead;
remaining -= toRead;
}
// Clean up parser
XML_ParserFree(parser);
parser = nullptr;
Serial.printf("[%lu] [OPDS] Parsed %zu entries\n", millis(), entries.size());
return true;
}
void OpdsParser::clear() {
entries.clear();
currentEntry = OpdsEntry{};
currentText.clear();
inEntry = false;
inTitle = false;
inAuthor = false;
inAuthorName = false;
inId = false;
}
std::vector<OpdsEntry> OpdsParser::getBooks() const {
std::vector<OpdsEntry> books;
for (const auto& entry : entries) {
if (entry.type == OpdsEntryType::BOOK) {
books.push_back(entry);
}
}
return books;
}
const char* OpdsParser::findAttribute(const XML_Char** atts, const char* name) {
for (int i = 0; atts[i]; i += 2) {
if (strcmp(atts[i], name) == 0) {
return atts[i + 1];
}
}
return nullptr;
}
void XMLCALL OpdsParser::startElement(void* userData, const XML_Char* name, const XML_Char** atts) {
auto* self = static_cast<OpdsParser*>(userData);
// Check for entry element (with or without namespace prefix)
if (strcmp(name, "entry") == 0 || strstr(name, ":entry") != nullptr) {
self->inEntry = true;
self->currentEntry = OpdsEntry{};
return;
}
if (!self->inEntry) return;
// Check for title element
if (strcmp(name, "title") == 0 || strstr(name, ":title") != nullptr) {
self->inTitle = true;
self->currentText.clear();
return;
}
// Check for author element
if (strcmp(name, "author") == 0 || strstr(name, ":author") != nullptr) {
self->inAuthor = true;
return;
}
// Check for author name element
if (self->inAuthor && (strcmp(name, "name") == 0 || strstr(name, ":name") != nullptr)) {
self->inAuthorName = true;
self->currentText.clear();
return;
}
// Check for id element
if (strcmp(name, "id") == 0 || strstr(name, ":id") != nullptr) {
self->inId = true;
self->currentText.clear();
return;
}
// Check for link element
if (strcmp(name, "link") == 0 || strstr(name, ":link") != nullptr) {
const char* rel = findAttribute(atts, "rel");
const char* type = findAttribute(atts, "type");
const char* href = findAttribute(atts, "href");
if (href) {
// Check for acquisition link with epub type (this is a downloadable book)
if (rel && type && strstr(rel, "opds-spec.org/acquisition") != nullptr &&
strcmp(type, "application/epub+zip") == 0) {
self->currentEntry.type = OpdsEntryType::BOOK;
self->currentEntry.href = href;
}
// Check for navigation link (subsection or no rel specified with atom+xml type)
else if (type && strstr(type, "application/atom+xml") != nullptr) {
// Only set navigation link if we don't already have an epub link
if (self->currentEntry.type != OpdsEntryType::BOOK) {
self->currentEntry.type = OpdsEntryType::NAVIGATION;
self->currentEntry.href = href;
}
}
}
}
}
void XMLCALL OpdsParser::endElement(void* userData, const XML_Char* name) {
auto* self = static_cast<OpdsParser*>(userData);
// Check for entry end
if (strcmp(name, "entry") == 0 || strstr(name, ":entry") != nullptr) {
// Only add entry if it has required fields (title and href)
if (!self->currentEntry.title.empty() && !self->currentEntry.href.empty()) {
self->entries.push_back(self->currentEntry);
}
self->inEntry = false;
self->currentEntry = OpdsEntry{};
return;
}
if (!self->inEntry) return;
// Check for title end
if (strcmp(name, "title") == 0 || strstr(name, ":title") != nullptr) {
if (self->inTitle) {
self->currentEntry.title = self->currentText;
}
self->inTitle = false;
return;
}
// Check for author end
if (strcmp(name, "author") == 0 || strstr(name, ":author") != nullptr) {
self->inAuthor = false;
return;
}
// Check for author name end
if (self->inAuthor && (strcmp(name, "name") == 0 || strstr(name, ":name") != nullptr)) {
if (self->inAuthorName) {
self->currentEntry.author = self->currentText;
}
self->inAuthorName = false;
return;
}
// Check for id end
if (strcmp(name, "id") == 0 || strstr(name, ":id") != nullptr) {
if (self->inId) {
self->currentEntry.id = self->currentText;
}
self->inId = false;
return;
}
}
void XMLCALL OpdsParser::characterData(void* userData, const XML_Char* s, const int len) {
auto* self = static_cast<OpdsParser*>(userData);
// Only accumulate text when in a text element
if (self->inTitle || self->inAuthorName || self->inId) {
self->currentText.append(s, len);
}
}

View File

@@ -0,0 +1,99 @@
#pragma once
#include <expat.h>
#include <string>
#include <vector>
/**
* Type of OPDS entry.
*/
enum class OpdsEntryType {
NAVIGATION, // Link to another catalog
BOOK // Downloadable book
};
/**
* Represents an entry from an OPDS feed (either a navigation link or a book).
*/
struct OpdsEntry {
OpdsEntryType type = OpdsEntryType::NAVIGATION;
std::string title;
std::string author; // Only for books
std::string href; // Navigation URL or epub download URL
std::string id;
};
// Legacy alias for backward compatibility
using OpdsBook = OpdsEntry;
/**
* Parser for OPDS (Open Publication Distribution System) Atom feeds.
* Uses the Expat XML parser to parse OPDS catalog entries.
*
* Usage:
* OpdsParser parser;
* if (parser.parse(xmlData, xmlLength)) {
* for (const auto& entry : parser.getEntries()) {
* if (entry.type == OpdsEntryType::BOOK) {
* // Downloadable book
* } else {
* // Navigation link to another catalog
* }
* }
* }
*/
class OpdsParser {
public:
OpdsParser() = default;
~OpdsParser();
// Disable copy
OpdsParser(const OpdsParser&) = delete;
OpdsParser& operator=(const OpdsParser&) = delete;
/**
* Parse an OPDS XML feed.
* @param xmlData Pointer to the XML data
* @param length Length of the XML data
* @return true if parsing succeeded, false on error
*/
bool parse(const char* xmlData, size_t length);
/**
* Get the parsed entries (both navigation and book entries).
* @return Vector of OpdsEntry entries
*/
const std::vector<OpdsEntry>& getEntries() const { return entries; }
/**
* Get only book entries (legacy compatibility).
* @return Vector of book entries
*/
std::vector<OpdsEntry> getBooks() const;
/**
* Clear all parsed entries.
*/
void clear();
private:
// Expat callbacks
static void XMLCALL startElement(void* userData, const XML_Char* name, const XML_Char** atts);
static void XMLCALL endElement(void* userData, const XML_Char* name);
static void XMLCALL characterData(void* userData, const XML_Char* s, int len);
// Helper to find attribute value
static const char* findAttribute(const XML_Char** atts, const char* name);
XML_Parser parser = nullptr;
std::vector<OpdsEntry> entries;
OpdsEntry currentEntry;
std::string currentText;
// Parser state
bool inEntry = false;
bool inTitle = false;
bool inAuthor = false;
bool inAuthorName = false;
bool inId = false;
};