refactor: Memory optimization and XTC format removal

Memory optimization:
- Add LOG_STACK_WATERMARK macro for task stack monitoring
- Add freeCoverBufferIfAllocated() and preloadCoverBuffer() for memory management
- Improve cover buffer reuse to reduce heap fragmentation
- Add grayscale buffer cleanup safety in GfxRenderer
- Make grayscale rendering conditional on successful buffer allocation
- Add detailed heap fragmentation logging with ESP-IDF API
- Add CSS parser memory usage estimation

XTC format removal:
- Remove entire lib/Xtc library (XTC parser and types)
- Remove XtcReaderActivity and XtcReaderChapterSelectionActivity
- Remove XTC file handling from HomeActivity, SleepActivity, ReaderActivity
- Remove .xtc/.xtch from supported extensions in BookManager
- Remove XTC cache prefix from Md5Utils
- Update web server and file browser to exclude XTC format
- Clear in-memory caches when disk cache is cleared
This commit is contained in:
cottongin
2026-01-27 20:35:32 -05:00
parent 158caacfe0
commit c2a966a6ea
30 changed files with 201 additions and 2624 deletions

View File

@@ -251,8 +251,8 @@ bool Epub::parseCssFiles() {
SdMan.remove(tmpCssPath.c_str());
}
Serial.printf("[%lu] [EBP] Loaded %zu CSS style rules from %zu files\n", millis(), cssParser->ruleCount(),
cssFiles.size());
Serial.printf("[%lu] [EBP] Loaded %zu CSS style rules from %zu files (~%zu bytes)\n", millis(), cssParser->ruleCount(),
cssFiles.size(), cssParser->estimateMemoryUsage());
return true;
}

View File

@@ -71,6 +71,25 @@ class CssParser {
*/
[[nodiscard]] size_t ruleCount() const { return rulesBySelector_.size(); }
/**
* Estimate memory usage of loaded rules (for debugging)
* Returns approximate bytes used by selector strings and style data
*/
[[nodiscard]] size_t estimateMemoryUsage() const {
size_t bytes = 0;
// unordered_map overhead: roughly 8 bytes per bucket + per-entry overhead
bytes += rulesBySelector_.bucket_count() * sizeof(void*);
for (const auto& entry : rulesBySelector_) {
// String storage: capacity + SSO overhead (~24 bytes) + actual chars
bytes += sizeof(std::string) + entry.first.capacity();
// CssStyle is ~16 bytes
bytes += sizeof(CssStyle);
// Per-entry node overhead in unordered_map (~24-32 bytes)
bytes += 32;
}
return bytes;
}
/**
* Clear all loaded rules
*/

View File

@@ -857,7 +857,7 @@ bool GfxRenderer::storeBwBuffer() {
* Uses chunked restoration to match chunked storage.
*/
void GfxRenderer::restoreBwBuffer() {
// Check if any all chunks are allocated
// Check if all chunks are allocated
bool missingChunks = false;
for (const auto& bwBufferChunk : bwBufferChunks) {
if (!bwBufferChunk) {
@@ -868,6 +868,13 @@ void GfxRenderer::restoreBwBuffer() {
if (missingChunks) {
freeBwBufferChunks();
// CRITICAL: Even if restore fails, we must clean up the grayscale state
// to prevent grayscaleRevert() from being called with corrupted RAM state
// Use the current framebuffer content (which may not be ideal but prevents worse issues)
uint8_t* frameBuffer = einkDisplay.getFrameBuffer();
if (frameBuffer) {
einkDisplay.cleanupGrayscaleBuffers(frameBuffer);
}
return;
}
@@ -883,6 +890,8 @@ void GfxRenderer::restoreBwBuffer() {
if (!bwBufferChunks[i]) {
Serial.printf("[%lu] [GFX] !! BW buffer chunks not stored - this is likely a bug\n", millis());
freeBwBufferChunks();
// CRITICAL: Clean up grayscale state even on mid-restore failure
einkDisplay.cleanupGrayscaleBuffers(frameBuffer);
return;
}

View File

@@ -1,40 +0,0 @@
# XTC/XTCH Library
XTC ebook format support for CrossPoint Reader.
## Supported Formats
| Format | Extension | Description |
|--------|-----------|----------------------------------------------|
| XTC | `.xtc` | Container with XTG pages (1-bit monochrome) |
| XTCH | `.xtch` | Container with XTH pages (2-bit grayscale) |
## Format Overview
XTC/XTCH are container formats designed for ESP32 e-paper displays. They store pre-rendered bitmap pages optimized for the XTeink X4 e-reader (480x800 resolution).
### Container Structure (XTC/XTCH)
- 56-byte header with metadata offsets
- Optional metadata (title, author, etc.)
- Page index table (16 bytes per page)
- Page data (XTG or XTH format)
### Page Formats
#### XTG (1-bit monochrome)
- Row-major storage, 8 pixels per byte
- MSB first (bit 7 = leftmost pixel)
- 0 = Black, 1 = White
#### XTH (2-bit grayscale)
- Two bit planes stored sequentially
- Column-major order (right to left)
- 8 vertical pixels per byte
- Grayscale: 0=White, 1=Dark Grey, 2=Light Grey, 3=Black
## Reference
Original format info: <https://gist.github.com/CrazyCoder/b125f26d6987c0620058249f59f1327d>

View File

@@ -1,880 +0,0 @@
/**
* Xtc.cpp
*
* Main XTC ebook class implementation
* XTC ebook support for CrossPoint Reader
*/
#include "Xtc.h"
#include <FsHelpers.h>
#include <HardwareSerial.h>
#include <SDCardManager.h>
bool Xtc::load() {
Serial.printf("[%lu] [XTC] Loading XTC: %s\n", millis(), filepath.c_str());
// Initialize parser
parser.reset(new xtc::XtcParser());
// Open XTC file
xtc::XtcError err = parser->open(filepath.c_str());
if (err != xtc::XtcError::OK) {
Serial.printf("[%lu] [XTC] Failed to load: %s\n", millis(), xtc::errorToString(err));
parser.reset();
return false;
}
loaded = true;
Serial.printf("[%lu] [XTC] Loaded XTC: %s (%lu pages)\n", millis(), filepath.c_str(), parser->getPageCount());
return true;
}
bool Xtc::clearCache() const {
if (!SdMan.exists(cachePath.c_str())) {
Serial.printf("[%lu] [XTC] Cache does not exist, no action needed\n", millis());
return true;
}
if (!SdMan.removeDir(cachePath.c_str())) {
Serial.printf("[%lu] [XTC] Failed to clear cache\n", millis());
return false;
}
Serial.printf("[%lu] [XTC] Cache cleared successfully\n", millis());
return true;
}
void Xtc::setupCacheDir() const {
if (SdMan.exists(cachePath.c_str())) {
return;
}
// Create directories recursively
for (size_t i = 1; i < cachePath.length(); i++) {
if (cachePath[i] == '/') {
SdMan.mkdir(cachePath.substr(0, i).c_str());
}
}
SdMan.mkdir(cachePath.c_str());
}
std::string Xtc::getTitle() const {
if (!loaded || !parser) {
return "";
}
// Try to get title from XTC metadata first
std::string title = parser->getTitle();
if (!title.empty()) {
return title;
}
// Fallback: extract filename from path as title
size_t lastSlash = filepath.find_last_of('/');
size_t lastDot = filepath.find_last_of('.');
if (lastSlash == std::string::npos) {
lastSlash = 0;
} else {
lastSlash++;
}
if (lastDot == std::string::npos || lastDot <= lastSlash) {
return filepath.substr(lastSlash);
}
return filepath.substr(lastSlash, lastDot - lastSlash);
}
bool Xtc::hasChapters() const {
if (!loaded || !parser) {
return false;
}
return parser->hasChapters();
}
const std::vector<xtc::ChapterInfo>& Xtc::getChapters() const {
static const std::vector<xtc::ChapterInfo> kEmpty;
if (!loaded || !parser) {
return kEmpty;
}
return parser->getChapters();
}
std::string Xtc::getCoverBmpPath() const { return cachePath + "/cover.bmp"; }
bool Xtc::generateCoverBmp() const {
// Already generated
if (SdMan.exists(getCoverBmpPath().c_str())) {
return true;
}
if (!loaded || !parser) {
Serial.printf("[%lu] [XTC] Cannot generate cover BMP, file not loaded\n", millis());
return false;
}
if (parser->getPageCount() == 0) {
Serial.printf("[%lu] [XTC] No pages in XTC file\n", millis());
return false;
}
// Setup cache directory
setupCacheDir();
// Get first page info for cover
xtc::PageInfo pageInfo;
if (!parser->getPageInfo(0, pageInfo)) {
Serial.printf("[%lu] [XTC] Failed to get first page info\n", millis());
return false;
}
// Get bit depth
const uint8_t bitDepth = parser->getBitDepth();
// Allocate buffer for page data
// XTG (1-bit): Row-major, ((width+7)/8) * height bytes
// XTH (2-bit): Two bit planes, column-major, ((width * height + 7) / 8) * 2 bytes
size_t bitmapSize;
if (bitDepth == 2) {
bitmapSize = ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageInfo.width + 7) / 8) * pageInfo.height;
}
uint8_t* pageBuffer = static_cast<uint8_t*>(malloc(bitmapSize));
if (!pageBuffer) {
Serial.printf("[%lu] [XTC] Failed to allocate page buffer (%lu bytes)\n", millis(), bitmapSize);
return false;
}
// Load first page (cover)
size_t bytesRead = const_cast<xtc::XtcParser*>(parser.get())->loadPage(0, pageBuffer, bitmapSize);
if (bytesRead == 0) {
Serial.printf("[%lu] [XTC] Failed to load cover page\n", millis());
free(pageBuffer);
return false;
}
// Create BMP file
FsFile coverBmp;
if (!SdMan.openFileForWrite("XTC", getCoverBmpPath(), coverBmp)) {
Serial.printf("[%lu] [XTC] Failed to create cover BMP file\n", millis());
free(pageBuffer);
return false;
}
// Write BMP header
// BMP file header (14 bytes)
const uint32_t rowSize = ((pageInfo.width + 31) / 32) * 4; // Row size aligned to 4 bytes
const uint32_t imageSize = rowSize * pageInfo.height;
const uint32_t fileSize = 14 + 40 + 8 + imageSize; // Header + DIB + palette + data
// File header
coverBmp.write('B');
coverBmp.write('M');
coverBmp.write(reinterpret_cast<const uint8_t*>(&fileSize), 4);
uint32_t reserved = 0;
coverBmp.write(reinterpret_cast<const uint8_t*>(&reserved), 4);
uint32_t dataOffset = 14 + 40 + 8; // 1-bit palette has 2 colors (8 bytes)
coverBmp.write(reinterpret_cast<const uint8_t*>(&dataOffset), 4);
// DIB header (BITMAPINFOHEADER - 40 bytes)
uint32_t dibHeaderSize = 40;
coverBmp.write(reinterpret_cast<const uint8_t*>(&dibHeaderSize), 4);
int32_t width = pageInfo.width;
coverBmp.write(reinterpret_cast<const uint8_t*>(&width), 4);
int32_t height = -static_cast<int32_t>(pageInfo.height); // Negative for top-down
coverBmp.write(reinterpret_cast<const uint8_t*>(&height), 4);
uint16_t planes = 1;
coverBmp.write(reinterpret_cast<const uint8_t*>(&planes), 2);
uint16_t bitsPerPixel = 1; // 1-bit monochrome
coverBmp.write(reinterpret_cast<const uint8_t*>(&bitsPerPixel), 2);
uint32_t compression = 0; // BI_RGB (no compression)
coverBmp.write(reinterpret_cast<const uint8_t*>(&compression), 4);
coverBmp.write(reinterpret_cast<const uint8_t*>(&imageSize), 4);
int32_t ppmX = 2835; // 72 DPI
coverBmp.write(reinterpret_cast<const uint8_t*>(&ppmX), 4);
int32_t ppmY = 2835;
coverBmp.write(reinterpret_cast<const uint8_t*>(&ppmY), 4);
uint32_t colorsUsed = 2;
coverBmp.write(reinterpret_cast<const uint8_t*>(&colorsUsed), 4);
uint32_t colorsImportant = 2;
coverBmp.write(reinterpret_cast<const uint8_t*>(&colorsImportant), 4);
// Color palette (2 colors for 1-bit)
// XTC 1-bit polarity: 0 = black, 1 = white (standard BMP palette order)
// Color 0: Black (text/foreground in XTC)
uint8_t black[4] = {0x00, 0x00, 0x00, 0x00};
coverBmp.write(black, 4);
// Color 1: White (background in XTC)
uint8_t white[4] = {0xFF, 0xFF, 0xFF, 0x00};
coverBmp.write(white, 4);
// Write bitmap data
// BMP requires 4-byte row alignment
const size_t dstRowSize = (pageInfo.width + 7) / 8; // 1-bit destination row size
if (bitDepth == 2) {
// XTH 2-bit mode: Two bit planes, column-major order
// - Columns scanned right to left (x = width-1 down to 0)
// - 8 vertical pixels per byte (MSB = topmost pixel in group)
// - First plane: Bit1, Second plane: Bit2
// - Pixel value = (bit1 << 1) | bit2
const size_t planeSize = (static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8;
const uint8_t* plane1 = pageBuffer; // Bit1 plane
const uint8_t* plane2 = pageBuffer + planeSize; // Bit2 plane
const size_t colBytes = (pageInfo.height + 7) / 8; // Bytes per column
// Allocate a row buffer for 1-bit output
uint8_t* rowBuffer = static_cast<uint8_t*>(malloc(dstRowSize));
if (!rowBuffer) {
free(pageBuffer);
coverBmp.close();
return false;
}
for (uint16_t y = 0; y < pageInfo.height; y++) {
memset(rowBuffer, 0xFF, dstRowSize); // Start with all white
for (uint16_t x = 0; x < pageInfo.width; x++) {
// Column-major, right to left: column index = (width - 1 - x)
const size_t colIndex = pageInfo.width - 1 - x;
const size_t byteInCol = y / 8;
const size_t bitInByte = 7 - (y % 8); // MSB = topmost pixel
const size_t byteOffset = colIndex * colBytes + byteInCol;
const uint8_t bit1 = (plane1[byteOffset] >> bitInByte) & 1;
const uint8_t bit2 = (plane2[byteOffset] >> bitInByte) & 1;
const uint8_t pixelValue = (bit1 << 1) | bit2;
// Threshold: 0=white (1); 1,2,3=black (0)
if (pixelValue >= 1) {
// Set bit to 0 (black) in BMP format
const size_t dstByte = x / 8;
const size_t dstBit = 7 - (x % 8);
rowBuffer[dstByte] &= ~(1 << dstBit);
}
}
// Write converted row
coverBmp.write(rowBuffer, dstRowSize);
// Pad to 4-byte boundary
uint8_t padding[4] = {0, 0, 0, 0};
size_t paddingSize = rowSize - dstRowSize;
if (paddingSize > 0) {
coverBmp.write(padding, paddingSize);
}
}
free(rowBuffer);
} else {
// 1-bit source: write directly with proper padding
const size_t srcRowSize = (pageInfo.width + 7) / 8;
for (uint16_t y = 0; y < pageInfo.height; y++) {
// Write source row
coverBmp.write(pageBuffer + y * srcRowSize, srcRowSize);
// Pad to 4-byte boundary
uint8_t padding[4] = {0, 0, 0, 0};
size_t paddingSize = rowSize - srcRowSize;
if (paddingSize > 0) {
coverBmp.write(padding, paddingSize);
}
}
}
coverBmp.close();
free(pageBuffer);
Serial.printf("[%lu] [XTC] Generated cover BMP: %s\n", millis(), getCoverBmpPath().c_str());
return true;
}
std::string Xtc::getThumbBmpPath() const { return cachePath + "/thumb.bmp"; }
bool Xtc::generateThumbBmp() const {
// Already generated
if (SdMan.exists(getThumbBmpPath().c_str())) {
return true;
}
if (!loaded || !parser) {
Serial.printf("[%lu] [XTC] Cannot generate thumb BMP, file not loaded\n", millis());
return false;
}
if (parser->getPageCount() == 0) {
Serial.printf("[%lu] [XTC] No pages in XTC file\n", millis());
return false;
}
// Setup cache directory
setupCacheDir();
// Get first page info for cover
xtc::PageInfo pageInfo;
if (!parser->getPageInfo(0, pageInfo)) {
Serial.printf("[%lu] [XTC] Failed to get first page info\n", millis());
return false;
}
// Get bit depth
const uint8_t bitDepth = parser->getBitDepth();
// Calculate target dimensions for thumbnail (fit within 240x400 Continue Reading card)
constexpr int THUMB_TARGET_WIDTH = 240;
constexpr int THUMB_TARGET_HEIGHT = 400;
// Calculate scale factor
float scaleX = static_cast<float>(THUMB_TARGET_WIDTH) / pageInfo.width;
float scaleY = static_cast<float>(THUMB_TARGET_HEIGHT) / pageInfo.height;
float scale = (scaleX < scaleY) ? scaleX : scaleY;
// Only scale down, never up
if (scale >= 1.0f) {
// Page is already small enough, just use cover.bmp
// Copy cover.bmp to thumb.bmp
if (generateCoverBmp()) {
FsFile src, dst;
if (SdMan.openFileForRead("XTC", getCoverBmpPath(), src)) {
if (SdMan.openFileForWrite("XTC", getThumbBmpPath(), dst)) {
uint8_t buffer[512];
while (src.available()) {
size_t bytesRead = src.read(buffer, sizeof(buffer));
dst.write(buffer, bytesRead);
}
dst.close();
}
src.close();
}
Serial.printf("[%lu] [XTC] Copied cover to thumb (no scaling needed)\n", millis());
return SdMan.exists(getThumbBmpPath().c_str());
}
return false;
}
uint16_t thumbWidth = static_cast<uint16_t>(pageInfo.width * scale);
uint16_t thumbHeight = static_cast<uint16_t>(pageInfo.height * scale);
Serial.printf("[%lu] [XTC] Generating thumb BMP: %dx%d -> %dx%d (scale: %.3f)\n", millis(), pageInfo.width,
pageInfo.height, thumbWidth, thumbHeight, scale);
// Allocate buffer for page data
size_t bitmapSize;
if (bitDepth == 2) {
bitmapSize = ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageInfo.width + 7) / 8) * pageInfo.height;
}
uint8_t* pageBuffer = static_cast<uint8_t*>(malloc(bitmapSize));
if (!pageBuffer) {
Serial.printf("[%lu] [XTC] Failed to allocate page buffer (%lu bytes)\n", millis(), bitmapSize);
return false;
}
// Load first page (cover)
size_t bytesRead = const_cast<xtc::XtcParser*>(parser.get())->loadPage(0, pageBuffer, bitmapSize);
if (bytesRead == 0) {
Serial.printf("[%lu] [XTC] Failed to load cover page for thumb\n", millis());
free(pageBuffer);
return false;
}
// Create thumbnail BMP file - use 1-bit format for fast home screen rendering (no gray passes)
FsFile thumbBmp;
if (!SdMan.openFileForWrite("XTC", getThumbBmpPath(), thumbBmp)) {
Serial.printf("[%lu] [XTC] Failed to create thumb BMP file\n", millis());
free(pageBuffer);
return false;
}
// Write 1-bit BMP header for fast home screen rendering
const uint32_t rowSize = (thumbWidth + 31) / 32 * 4; // 1 bit per pixel, aligned to 4 bytes
const uint32_t imageSize = rowSize * thumbHeight;
const uint32_t fileSize = 14 + 40 + 8 + imageSize; // 8 bytes for 2-color palette
// File header
thumbBmp.write('B');
thumbBmp.write('M');
thumbBmp.write(reinterpret_cast<const uint8_t*>(&fileSize), 4);
uint32_t reserved = 0;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&reserved), 4);
uint32_t dataOffset = 14 + 40 + 8; // 1-bit palette has 2 colors (8 bytes)
thumbBmp.write(reinterpret_cast<const uint8_t*>(&dataOffset), 4);
// DIB header
uint32_t dibHeaderSize = 40;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&dibHeaderSize), 4);
int32_t widthVal = thumbWidth;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&widthVal), 4);
int32_t heightVal = -static_cast<int32_t>(thumbHeight); // Negative for top-down
thumbBmp.write(reinterpret_cast<const uint8_t*>(&heightVal), 4);
uint16_t planes = 1;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&planes), 2);
uint16_t bitsPerPixel = 1; // 1-bit for black and white
thumbBmp.write(reinterpret_cast<const uint8_t*>(&bitsPerPixel), 2);
uint32_t compression = 0;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&compression), 4);
thumbBmp.write(reinterpret_cast<const uint8_t*>(&imageSize), 4);
int32_t ppmX = 2835;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&ppmX), 4);
int32_t ppmY = 2835;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&ppmY), 4);
uint32_t colorsUsed = 2;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&colorsUsed), 4);
uint32_t colorsImportant = 2;
thumbBmp.write(reinterpret_cast<const uint8_t*>(&colorsImportant), 4);
// Color palette (2 colors for 1-bit: black and white)
uint8_t palette[8] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0xFF, 0xFF, 0xFF, 0x00 // Color 1: White
};
thumbBmp.write(palette, 8);
// Allocate row buffer for 1-bit output
uint8_t* rowBuffer = static_cast<uint8_t*>(malloc(rowSize));
if (!rowBuffer) {
free(pageBuffer);
thumbBmp.close();
return false;
}
// Fixed-point scale factor (16.16)
uint32_t scaleInv_fp = static_cast<uint32_t>(65536.0f / scale);
// Pre-calculate plane info for 2-bit mode
const size_t planeSize = (bitDepth == 2) ? ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) : 0;
const uint8_t* plane1 = (bitDepth == 2) ? pageBuffer : nullptr;
const uint8_t* plane2 = (bitDepth == 2) ? pageBuffer + planeSize : nullptr;
const size_t colBytes = (bitDepth == 2) ? ((pageInfo.height + 7) / 8) : 0;
const size_t srcRowBytes = (bitDepth == 1) ? ((pageInfo.width + 7) / 8) : 0;
for (uint16_t dstY = 0; dstY < thumbHeight; dstY++) {
memset(rowBuffer, 0xFF, rowSize); // Start with all white (bit 1)
// Calculate source Y range with bounds checking
uint32_t srcYStart = (static_cast<uint32_t>(dstY) * scaleInv_fp) >> 16;
uint32_t srcYEnd = (static_cast<uint32_t>(dstY + 1) * scaleInv_fp) >> 16;
if (srcYStart >= pageInfo.height) srcYStart = pageInfo.height - 1;
if (srcYEnd > pageInfo.height) srcYEnd = pageInfo.height;
if (srcYEnd <= srcYStart) srcYEnd = srcYStart + 1;
if (srcYEnd > pageInfo.height) srcYEnd = pageInfo.height;
for (uint16_t dstX = 0; dstX < thumbWidth; dstX++) {
// Calculate source X range with bounds checking
uint32_t srcXStart = (static_cast<uint32_t>(dstX) * scaleInv_fp) >> 16;
uint32_t srcXEnd = (static_cast<uint32_t>(dstX + 1) * scaleInv_fp) >> 16;
if (srcXStart >= pageInfo.width) srcXStart = pageInfo.width - 1;
if (srcXEnd > pageInfo.width) srcXEnd = pageInfo.width;
if (srcXEnd <= srcXStart) srcXEnd = srcXStart + 1;
if (srcXEnd > pageInfo.width) srcXEnd = pageInfo.width;
// Area averaging: sum grayscale values (0-255 range)
uint32_t graySum = 0;
uint32_t totalCount = 0;
for (uint32_t srcY = srcYStart; srcY < srcYEnd && srcY < pageInfo.height; srcY++) {
for (uint32_t srcX = srcXStart; srcX < srcXEnd && srcX < pageInfo.width; srcX++) {
uint8_t grayValue = 255; // Default: white
if (bitDepth == 2) {
// XTH 2-bit mode: pixel value 0-3
// Bounds check for column index
if (srcX < pageInfo.width) {
const size_t colIndex = pageInfo.width - 1 - srcX;
const size_t byteInCol = srcY / 8;
const size_t bitInByte = 7 - (srcY % 8);
const size_t byteOffset = colIndex * colBytes + byteInCol;
// Bounds check for buffer access
if (byteOffset < planeSize) {
const uint8_t bit1 = (plane1[byteOffset] >> bitInByte) & 1;
const uint8_t bit2 = (plane2[byteOffset] >> bitInByte) & 1;
const uint8_t pixelValue = (bit1 << 1) | bit2;
// Convert 2-bit (0-3) to grayscale: 0=black, 3=white
// pixelValue: 0=white, 1=light gray, 2=dark gray, 3=black (XTC polarity)
grayValue = (3 - pixelValue) * 85; // 0->255, 1->170, 2->85, 3->0
}
}
} else {
// 1-bit mode
const size_t byteIdx = srcY * srcRowBytes + srcX / 8;
const size_t bitIdx = 7 - (srcX % 8);
// Bounds check for buffer access
if (byteIdx < bitmapSize) {
const uint8_t pixelBit = (pageBuffer[byteIdx] >> bitIdx) & 1;
// XTC 1-bit polarity: 0=black, 1=white (same as BMP palette)
grayValue = pixelBit ? 255 : 0;
}
}
graySum += grayValue;
totalCount++;
}
}
// Calculate average grayscale and quantize to 1-bit with noise dithering
uint8_t avgGray = (totalCount > 0) ? static_cast<uint8_t>(graySum / totalCount) : 255;
// Hash-based noise dithering for 1-bit output
uint32_t hash = static_cast<uint32_t>(dstX) * 374761393u + static_cast<uint32_t>(dstY) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24); // 0-255
const int adjustedThreshold = 128 + ((threshold - 128) / 2); // Range: 64-192
// Quantize to 1-bit: 0=black, 1=white
uint8_t oneBit = (avgGray >= adjustedThreshold) ? 1 : 0;
// Pack 1-bit value into row buffer (MSB first, 8 pixels per byte)
const size_t byteIndex = dstX / 8;
const size_t bitOffset = 7 - (dstX % 8);
// Bounds check for row buffer access
if (byteIndex < rowSize) {
if (oneBit) {
rowBuffer[byteIndex] |= (1 << bitOffset); // Set bit for white
} else {
rowBuffer[byteIndex] &= ~(1 << bitOffset); // Clear bit for black
}
}
}
// Write row (already padded to 4-byte boundary by rowSize)
thumbBmp.write(rowBuffer, rowSize);
}
free(rowBuffer);
thumbBmp.close();
free(pageBuffer);
Serial.printf("[%lu] [XTC] Generated thumb BMP (%dx%d): %s\n", millis(), thumbWidth, thumbHeight,
getThumbBmpPath().c_str());
return true;
}
std::string Xtc::getMicroThumbBmpPath() const { return cachePath + "/micro_thumb.bmp"; }
bool Xtc::generateMicroThumbBmp() const {
// Already generated
if (SdMan.exists(getMicroThumbBmpPath().c_str())) {
return true;
}
if (!loaded || !parser) {
Serial.printf("[%lu] [XTC] Cannot generate micro thumb BMP, file not loaded\n", millis());
return false;
}
if (parser->getPageCount() == 0) {
Serial.printf("[%lu] [XTC] No pages in XTC file\n", millis());
return false;
}
// Setup cache directory
setupCacheDir();
// Get first page info for cover
xtc::PageInfo pageInfo;
if (!parser->getPageInfo(0, pageInfo)) {
Serial.printf("[%lu] [XTC] Failed to get first page info\n", millis());
return false;
}
// Get bit depth
const uint8_t bitDepth = parser->getBitDepth();
// Calculate target dimensions for micro thumbnail (45x60 for Recent Books list)
constexpr int MICRO_THUMB_TARGET_WIDTH = 45;
constexpr int MICRO_THUMB_TARGET_HEIGHT = 60;
// Calculate scale factor to fit within target dimensions
float scaleX = static_cast<float>(MICRO_THUMB_TARGET_WIDTH) / pageInfo.width;
float scaleY = static_cast<float>(MICRO_THUMB_TARGET_HEIGHT) / pageInfo.height;
float scale = (scaleX < scaleY) ? scaleX : scaleY;
uint16_t microThumbWidth = static_cast<uint16_t>(pageInfo.width * scale);
uint16_t microThumbHeight = static_cast<uint16_t>(pageInfo.height * scale);
// Ensure minimum size
if (microThumbWidth < 1) microThumbWidth = 1;
if (microThumbHeight < 1) microThumbHeight = 1;
Serial.printf("[%lu] [XTC] Generating micro thumb BMP: %dx%d -> %dx%d (scale: %.3f)\n", millis(), pageInfo.width,
pageInfo.height, microThumbWidth, microThumbHeight, scale);
// Allocate buffer for page data
size_t bitmapSize;
if (bitDepth == 2) {
bitmapSize = ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageInfo.width + 7) / 8) * pageInfo.height;
}
uint8_t* pageBuffer = static_cast<uint8_t*>(malloc(bitmapSize));
if (!pageBuffer) {
Serial.printf("[%lu] [XTC] Failed to allocate page buffer (%lu bytes)\n", millis(), bitmapSize);
return false;
}
// Load first page (cover)
size_t bytesRead = const_cast<xtc::XtcParser*>(parser.get())->loadPage(0, pageBuffer, bitmapSize);
if (bytesRead == 0) {
Serial.printf("[%lu] [XTC] Failed to load cover page for micro thumb\n", millis());
free(pageBuffer);
return false;
}
// Create micro thumbnail BMP file - use 1-bit format
FsFile microThumbBmp;
if (!SdMan.openFileForWrite("XTC", getMicroThumbBmpPath(), microThumbBmp)) {
Serial.printf("[%lu] [XTC] Failed to create micro thumb BMP file\n", millis());
free(pageBuffer);
return false;
}
// Write 1-bit BMP header
const uint32_t rowSize = (microThumbWidth + 31) / 32 * 4; // 1 bit per pixel, aligned to 4 bytes
const uint32_t imageSize = rowSize * microThumbHeight;
const uint32_t fileSize = 14 + 40 + 8 + imageSize; // 8 bytes for 2-color palette
// File header
microThumbBmp.write('B');
microThumbBmp.write('M');
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&fileSize), 4);
uint32_t reserved = 0;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&reserved), 4);
uint32_t dataOffset = 14 + 40 + 8;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&dataOffset), 4);
// DIB header
uint32_t dibHeaderSize = 40;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&dibHeaderSize), 4);
int32_t widthVal = microThumbWidth;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&widthVal), 4);
int32_t heightVal = -static_cast<int32_t>(microThumbHeight); // Negative for top-down
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&heightVal), 4);
uint16_t planes = 1;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&planes), 2);
uint16_t bitsPerPixel = 1;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&bitsPerPixel), 2);
uint32_t compression = 0;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&compression), 4);
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&imageSize), 4);
int32_t ppmX = 2835;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&ppmX), 4);
int32_t ppmY = 2835;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&ppmY), 4);
uint32_t colorsUsed = 2;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&colorsUsed), 4);
uint32_t colorsImportant = 2;
microThumbBmp.write(reinterpret_cast<const uint8_t*>(&colorsImportant), 4);
// Color palette
uint8_t palette[8] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0xFF, 0xFF, 0xFF, 0x00 // Color 1: White
};
microThumbBmp.write(palette, 8);
// Allocate row buffer
uint8_t* rowBuffer = static_cast<uint8_t*>(malloc(rowSize));
if (!rowBuffer) {
free(pageBuffer);
microThumbBmp.close();
return false;
}
// Fixed-point scale factor (16.16)
uint32_t scaleInv_fp = static_cast<uint32_t>(65536.0f / scale);
// Pre-calculate plane info for 2-bit mode
const size_t planeSize = (bitDepth == 2) ? ((static_cast<size_t>(pageInfo.width) * pageInfo.height + 7) / 8) : 0;
const uint8_t* plane1 = (bitDepth == 2) ? pageBuffer : nullptr;
const uint8_t* plane2 = (bitDepth == 2) ? pageBuffer + planeSize : nullptr;
const size_t colBytes = (bitDepth == 2) ? ((pageInfo.height + 7) / 8) : 0;
const size_t srcRowBytes = (bitDepth == 1) ? ((pageInfo.width + 7) / 8) : 0;
for (uint16_t dstY = 0; dstY < microThumbHeight; dstY++) {
memset(rowBuffer, 0xFF, rowSize); // Start with all white
uint32_t srcYStart = (static_cast<uint32_t>(dstY) * scaleInv_fp) >> 16;
uint32_t srcYEnd = (static_cast<uint32_t>(dstY + 1) * scaleInv_fp) >> 16;
if (srcYStart >= pageInfo.height) srcYStart = pageInfo.height - 1;
if (srcYEnd > pageInfo.height) srcYEnd = pageInfo.height;
if (srcYEnd <= srcYStart) srcYEnd = srcYStart + 1;
if (srcYEnd > pageInfo.height) srcYEnd = pageInfo.height;
for (uint16_t dstX = 0; dstX < microThumbWidth; dstX++) {
uint32_t srcXStart = (static_cast<uint32_t>(dstX) * scaleInv_fp) >> 16;
uint32_t srcXEnd = (static_cast<uint32_t>(dstX + 1) * scaleInv_fp) >> 16;
if (srcXStart >= pageInfo.width) srcXStart = pageInfo.width - 1;
if (srcXEnd > pageInfo.width) srcXEnd = pageInfo.width;
if (srcXEnd <= srcXStart) srcXEnd = srcXStart + 1;
if (srcXEnd > pageInfo.width) srcXEnd = pageInfo.width;
// Area averaging
uint32_t graySum = 0;
uint32_t totalCount = 0;
for (uint32_t srcY = srcYStart; srcY < srcYEnd && srcY < pageInfo.height; srcY++) {
for (uint32_t srcX = srcXStart; srcX < srcXEnd && srcX < pageInfo.width; srcX++) {
uint8_t grayValue = 255;
if (bitDepth == 2) {
if (srcX < pageInfo.width) {
const size_t colIndex = pageInfo.width - 1 - srcX;
const size_t byteInCol = srcY / 8;
const size_t bitInByte = 7 - (srcY % 8);
const size_t byteOffset = colIndex * colBytes + byteInCol;
if (byteOffset < planeSize) {
const uint8_t bit1 = (plane1[byteOffset] >> bitInByte) & 1;
const uint8_t bit2 = (plane2[byteOffset] >> bitInByte) & 1;
const uint8_t pixelValue = (bit1 << 1) | bit2;
grayValue = (3 - pixelValue) * 85;
}
}
} else {
const size_t byteIdx = srcY * srcRowBytes + srcX / 8;
const size_t bitIdx = 7 - (srcX % 8);
if (byteIdx < bitmapSize) {
const uint8_t pixelBit = (pageBuffer[byteIdx] >> bitIdx) & 1;
grayValue = pixelBit ? 255 : 0;
}
}
graySum += grayValue;
totalCount++;
}
}
uint8_t avgGray = (totalCount > 0) ? static_cast<uint8_t>(graySum / totalCount) : 255;
// Hash-based noise dithering
uint32_t hash = static_cast<uint32_t>(dstX) * 374761393u + static_cast<uint32_t>(dstY) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24);
const int adjustedThreshold = 128 + ((threshold - 128) / 2);
uint8_t oneBit = (avgGray >= adjustedThreshold) ? 1 : 0;
const size_t byteIndex = dstX / 8;
const size_t bitOffset = 7 - (dstX % 8);
if (byteIndex < rowSize) {
if (oneBit) {
rowBuffer[byteIndex] |= (1 << bitOffset);
} else {
rowBuffer[byteIndex] &= ~(1 << bitOffset);
}
}
}
microThumbBmp.write(rowBuffer, rowSize);
}
free(rowBuffer);
microThumbBmp.close();
free(pageBuffer);
Serial.printf("[%lu] [XTC] Generated micro thumb BMP (%dx%d): %s\n", millis(), microThumbWidth, microThumbHeight,
getMicroThumbBmpPath().c_str());
return true;
}
bool Xtc::generateAllCovers(const std::function<void(int)>& progressCallback) const {
// Check if all covers already exist
const bool hasCover = SdMan.exists(getCoverBmpPath().c_str());
const bool hasThumb = SdMan.exists(getThumbBmpPath().c_str());
const bool hasMicroThumb = SdMan.exists(getMicroThumbBmpPath().c_str());
if (hasCover && hasThumb && hasMicroThumb) {
Serial.printf("[%lu] [XTC] All covers already cached\n", millis());
if (progressCallback) progressCallback(100);
return true;
}
if (!loaded || !parser) {
Serial.printf("[%lu] [XTC] Cannot generate covers, file not loaded\n", millis());
return false;
}
Serial.printf("[%lu] [XTC] Generating all covers (cover:%d, thumb:%d, micro:%d)\n", millis(), !hasCover, !hasThumb,
!hasMicroThumb);
// Generate each cover type that's missing with progress updates
if (!hasCover) {
generateCoverBmp();
}
if (progressCallback) progressCallback(33);
if (!hasThumb) {
generateThumbBmp();
}
if (progressCallback) progressCallback(66);
if (!hasMicroThumb) {
generateMicroThumbBmp();
}
if (progressCallback) progressCallback(100);
Serial.printf("[%lu] [XTC] All cover generation complete\n", millis());
return true;
}
uint32_t Xtc::getPageCount() const {
if (!loaded || !parser) {
return 0;
}
return parser->getPageCount();
}
uint16_t Xtc::getPageWidth() const {
if (!loaded || !parser) {
return 0;
}
return parser->getWidth();
}
uint16_t Xtc::getPageHeight() const {
if (!loaded || !parser) {
return 0;
}
return parser->getHeight();
}
uint8_t Xtc::getBitDepth() const {
if (!loaded || !parser) {
return 1; // Default to 1-bit
}
return parser->getBitDepth();
}
size_t Xtc::loadPage(uint32_t pageIndex, uint8_t* buffer, size_t bufferSize) const {
if (!loaded || !parser) {
return 0;
}
return const_cast<xtc::XtcParser*>(parser.get())->loadPage(pageIndex, buffer, bufferSize);
}
xtc::XtcError Xtc::loadPageStreaming(uint32_t pageIndex,
std::function<void(const uint8_t* data, size_t size, size_t offset)> callback,
size_t chunkSize) const {
if (!loaded || !parser) {
return xtc::XtcError::FILE_NOT_FOUND;
}
return const_cast<xtc::XtcParser*>(parser.get())->loadPageStreaming(pageIndex, callback, chunkSize);
}
uint8_t Xtc::calculateProgress(uint32_t currentPage) const {
if (!loaded || !parser || parser->getPageCount() == 0) {
return 0;
}
return static_cast<uint8_t>((currentPage + 1) * 100 / parser->getPageCount());
}
xtc::XtcError Xtc::getLastError() const {
if (!parser) {
return xtc::XtcError::FILE_NOT_FOUND;
}
return parser->getLastError();
}

View File

@@ -1,109 +0,0 @@
/**
* Xtc.h
*
* Main XTC ebook class for CrossPoint Reader
* Provides EPUB-like interface for XTC file handling
*/
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "Xtc/XtcParser.h"
#include "Xtc/XtcTypes.h"
/**
* XTC Ebook Handler
*
* Handles XTC file loading, page access, and cover image generation.
* Interface is designed to be similar to Epub class for easy integration.
*/
class Xtc {
std::string filepath;
std::string cachePath;
std::unique_ptr<xtc::XtcParser> parser;
bool loaded;
public:
explicit Xtc(std::string filepath, const std::string& cacheDir) : filepath(std::move(filepath)), loaded(false) {
// Create cache key based on filepath (same as Epub)
cachePath = cacheDir + "/xtc_" + std::to_string(std::hash<std::string>{}(this->filepath));
}
~Xtc() = default;
/**
* Load XTC file
* @return true on success
*/
bool load();
/**
* Clear cached data
* @return true on success
*/
bool clearCache() const;
/**
* Setup cache directory
*/
void setupCacheDir() const;
// Path accessors
const std::string& getCachePath() const { return cachePath; }
const std::string& getPath() const { return filepath; }
// Metadata
std::string getTitle() const;
bool hasChapters() const;
const std::vector<xtc::ChapterInfo>& getChapters() const;
// Cover image support (for sleep screen)
std::string getCoverBmpPath() const;
bool generateCoverBmp() const;
// Thumbnail support (for Continue Reading card)
std::string getThumbBmpPath() const;
bool generateThumbBmp() const;
// Micro thumbnail support (for Recent Books list)
std::string getMicroThumbBmpPath() const;
bool generateMicroThumbBmp() const;
// Generate all covers at once (for pre-generation on book open)
bool generateAllCovers(const std::function<void(int)>& progressCallback = nullptr) const;
// Page access
uint32_t getPageCount() const;
uint16_t getPageWidth() const;
uint16_t getPageHeight() const;
uint8_t getBitDepth() const; // 1 = XTC (1-bit), 2 = XTCH (2-bit)
/**
* Load page bitmap data
* @param pageIndex Page index (0-based)
* @param buffer Output buffer
* @param bufferSize Buffer size
* @return Number of bytes read
*/
size_t loadPage(uint32_t pageIndex, uint8_t* buffer, size_t bufferSize) const;
/**
* Load page with streaming callback
* @param pageIndex Page index
* @param callback Callback for each chunk
* @param chunkSize Chunk size
* @return Error code
*/
xtc::XtcError loadPageStreaming(uint32_t pageIndex,
std::function<void(const uint8_t* data, size_t size, size_t offset)> callback,
size_t chunkSize = 1024) const;
// Progress calculation
uint8_t calculateProgress(uint32_t currentPage) const;
// Check if file is loaded
bool isLoaded() const { return loaded; }
// Error information
xtc::XtcError getLastError() const;
};

View File

@@ -1,439 +0,0 @@
/**
* XtcParser.cpp
*
* XTC file parsing implementation
* XTC ebook support for CrossPoint Reader
*/
#include "XtcParser.h"
#include <FsHelpers.h>
#include <HardwareSerial.h>
#include <SDCardManager.h>
#include <cstring>
namespace xtc {
XtcParser::XtcParser()
: m_isOpen(false),
m_defaultWidth(DISPLAY_WIDTH),
m_defaultHeight(DISPLAY_HEIGHT),
m_bitDepth(1),
m_hasChapters(false),
m_lastError(XtcError::OK) {
memset(&m_header, 0, sizeof(m_header));
}
XtcParser::~XtcParser() { close(); }
XtcError XtcParser::open(const char* filepath) {
// Close if already open
if (m_isOpen) {
close();
}
// Open file
if (!SdMan.openFileForRead("XTC", filepath, m_file)) {
m_lastError = XtcError::FILE_NOT_FOUND;
return m_lastError;
}
// Read header
m_lastError = readHeader();
if (m_lastError != XtcError::OK) {
Serial.printf("[%lu] [XTC] Failed to read header: %s\n", millis(), errorToString(m_lastError));
m_file.close();
return m_lastError;
}
// Read title if available
readTitle();
// Read page table
m_lastError = readPageTable();
if (m_lastError != XtcError::OK) {
Serial.printf("[%lu] [XTC] Failed to read page table: %s\n", millis(), errorToString(m_lastError));
m_file.close();
return m_lastError;
}
// Read chapters if present
m_lastError = readChapters();
if (m_lastError != XtcError::OK) {
Serial.printf("[%lu] [XTC] Failed to read chapters: %s\n", millis(), errorToString(m_lastError));
m_file.close();
return m_lastError;
}
m_isOpen = true;
Serial.printf("[%lu] [XTC] Opened file: %s (%u pages, %dx%d)\n", millis(), filepath, m_header.pageCount,
m_defaultWidth, m_defaultHeight);
return XtcError::OK;
}
void XtcParser::close() {
if (m_isOpen) {
m_file.close();
m_isOpen = false;
}
m_pageTable.clear();
m_chapters.clear();
m_title.clear();
m_hasChapters = false;
memset(&m_header, 0, sizeof(m_header));
}
XtcError XtcParser::readHeader() {
// Read first 56 bytes of header
size_t bytesRead = m_file.read(reinterpret_cast<uint8_t*>(&m_header), sizeof(XtcHeader));
if (bytesRead != sizeof(XtcHeader)) {
return XtcError::READ_ERROR;
}
// Verify magic number (accept both XTC and XTCH)
if (m_header.magic != XTC_MAGIC && m_header.magic != XTCH_MAGIC) {
Serial.printf("[%lu] [XTC] Invalid magic: 0x%08X (expected 0x%08X or 0x%08X)\n", millis(), m_header.magic,
XTC_MAGIC, XTCH_MAGIC);
return XtcError::INVALID_MAGIC;
}
// Determine bit depth from file magic
m_bitDepth = (m_header.magic == XTCH_MAGIC) ? 2 : 1;
// Check version
// Currently, version 1.0 is the only valid version, however some generators are swapping the bytes around, so we
// accept both 1.0 and 0.1 for compatibility
const bool validVersion = m_header.versionMajor == 1 && m_header.versionMinor == 0 ||
m_header.versionMajor == 0 && m_header.versionMinor == 1;
if (!validVersion) {
Serial.printf("[%lu] [XTC] Unsupported version: %u.%u\n", millis(), m_header.versionMajor, m_header.versionMinor);
return XtcError::INVALID_VERSION;
}
// Basic validation
if (m_header.pageCount == 0) {
return XtcError::CORRUPTED_HEADER;
}
Serial.printf("[%lu] [XTC] Header: magic=0x%08X (%s), ver=%u.%u, pages=%u, bitDepth=%u\n", millis(), m_header.magic,
(m_header.magic == XTCH_MAGIC) ? "XTCH" : "XTC", m_header.versionMajor, m_header.versionMinor,
m_header.pageCount, m_bitDepth);
return XtcError::OK;
}
XtcError XtcParser::readTitle() {
// Title is usually at offset 0x38 (56) for 88-byte headers
// Read title as null-terminated UTF-8 string
if (m_header.titleOffset == 0) {
m_header.titleOffset = 0x38; // Default offset
}
if (!m_file.seek(m_header.titleOffset)) {
return XtcError::READ_ERROR;
}
char titleBuf[128] = {0};
m_file.read(reinterpret_cast<uint8_t*>(titleBuf), sizeof(titleBuf) - 1);
m_title = titleBuf;
Serial.printf("[%lu] [XTC] Title: %s\n", millis(), m_title.c_str());
return XtcError::OK;
}
XtcError XtcParser::readPageTable() {
if (m_header.pageTableOffset == 0) {
Serial.printf("[%lu] [XTC] Page table offset is 0, cannot read\n", millis());
return XtcError::CORRUPTED_HEADER;
}
// Seek to page table
if (!m_file.seek(m_header.pageTableOffset)) {
Serial.printf("[%lu] [XTC] Failed to seek to page table at %llu\n", millis(), m_header.pageTableOffset);
return XtcError::READ_ERROR;
}
m_pageTable.resize(m_header.pageCount);
// Read page table entries
for (uint16_t i = 0; i < m_header.pageCount; i++) {
PageTableEntry entry;
size_t bytesRead = m_file.read(reinterpret_cast<uint8_t*>(&entry), sizeof(PageTableEntry));
if (bytesRead != sizeof(PageTableEntry)) {
Serial.printf("[%lu] [XTC] Failed to read page table entry %u\n", millis(), i);
return XtcError::READ_ERROR;
}
m_pageTable[i].offset = static_cast<uint32_t>(entry.dataOffset);
m_pageTable[i].size = entry.dataSize;
m_pageTable[i].width = entry.width;
m_pageTable[i].height = entry.height;
m_pageTable[i].bitDepth = m_bitDepth;
// Update default dimensions from first page
if (i == 0) {
m_defaultWidth = entry.width;
m_defaultHeight = entry.height;
}
}
Serial.printf("[%lu] [XTC] Read %u page table entries\n", millis(), m_header.pageCount);
return XtcError::OK;
}
XtcError XtcParser::readChapters() {
m_hasChapters = false;
m_chapters.clear();
uint8_t hasChaptersFlag = 0;
if (!m_file.seek(0x0B)) {
return XtcError::READ_ERROR;
}
if (m_file.read(&hasChaptersFlag, sizeof(hasChaptersFlag)) != sizeof(hasChaptersFlag)) {
return XtcError::READ_ERROR;
}
if (hasChaptersFlag != 1) {
return XtcError::OK;
}
uint64_t chapterOffset = 0;
if (!m_file.seek(0x30)) {
return XtcError::READ_ERROR;
}
if (m_file.read(reinterpret_cast<uint8_t*>(&chapterOffset), sizeof(chapterOffset)) != sizeof(chapterOffset)) {
return XtcError::READ_ERROR;
}
if (chapterOffset == 0) {
return XtcError::OK;
}
const uint64_t fileSize = m_file.size();
if (chapterOffset < sizeof(XtcHeader) || chapterOffset >= fileSize || chapterOffset + 96 > fileSize) {
return XtcError::OK;
}
uint64_t maxOffset = 0;
if (m_header.pageTableOffset > chapterOffset) {
maxOffset = m_header.pageTableOffset;
} else if (m_header.dataOffset > chapterOffset) {
maxOffset = m_header.dataOffset;
} else {
maxOffset = fileSize;
}
if (maxOffset <= chapterOffset) {
return XtcError::OK;
}
constexpr size_t chapterSize = 96;
const uint64_t available = maxOffset - chapterOffset;
const size_t chapterCount = static_cast<size_t>(available / chapterSize);
if (chapterCount == 0) {
return XtcError::OK;
}
if (!m_file.seek(chapterOffset)) {
return XtcError::READ_ERROR;
}
std::vector<uint8_t> chapterBuf(chapterSize);
for (size_t i = 0; i < chapterCount; i++) {
if (m_file.read(chapterBuf.data(), chapterSize) != chapterSize) {
return XtcError::READ_ERROR;
}
char nameBuf[81];
memcpy(nameBuf, chapterBuf.data(), 80);
nameBuf[80] = '\0';
const size_t nameLen = strnlen(nameBuf, 80);
std::string name(nameBuf, nameLen);
uint16_t startPage = 0;
uint16_t endPage = 0;
memcpy(&startPage, chapterBuf.data() + 0x50, sizeof(startPage));
memcpy(&endPage, chapterBuf.data() + 0x52, sizeof(endPage));
if (name.empty() && startPage == 0 && endPage == 0) {
break;
}
if (startPage > 0) {
startPage--;
}
if (endPage > 0) {
endPage--;
}
if (startPage >= m_header.pageCount) {
continue;
}
if (endPage >= m_header.pageCount) {
endPage = m_header.pageCount - 1;
}
if (startPage > endPage) {
continue;
}
ChapterInfo chapter{std::move(name), startPage, endPage};
m_chapters.push_back(std::move(chapter));
}
m_hasChapters = !m_chapters.empty();
Serial.printf("[%lu] [XTC] Chapters: %u\n", millis(), static_cast<unsigned int>(m_chapters.size()));
return XtcError::OK;
}
bool XtcParser::getPageInfo(uint32_t pageIndex, PageInfo& info) const {
if (pageIndex >= m_pageTable.size()) {
return false;
}
info = m_pageTable[pageIndex];
return true;
}
size_t XtcParser::loadPage(uint32_t pageIndex, uint8_t* buffer, size_t bufferSize) {
if (!m_isOpen) {
m_lastError = XtcError::FILE_NOT_FOUND;
return 0;
}
if (pageIndex >= m_header.pageCount) {
m_lastError = XtcError::PAGE_OUT_OF_RANGE;
return 0;
}
const PageInfo& page = m_pageTable[pageIndex];
// Seek to page data
if (!m_file.seek(page.offset)) {
Serial.printf("[%lu] [XTC] Failed to seek to page %u at offset %lu\n", millis(), pageIndex, page.offset);
m_lastError = XtcError::READ_ERROR;
return 0;
}
// Read page header (XTG for 1-bit, XTH for 2-bit - same structure)
XtgPageHeader pageHeader;
size_t headerRead = m_file.read(reinterpret_cast<uint8_t*>(&pageHeader), sizeof(XtgPageHeader));
if (headerRead != sizeof(XtgPageHeader)) {
Serial.printf("[%lu] [XTC] Failed to read page header for page %u\n", millis(), pageIndex);
m_lastError = XtcError::READ_ERROR;
return 0;
}
// Verify page magic (XTG for 1-bit, XTH for 2-bit)
const uint32_t expectedMagic = (m_bitDepth == 2) ? XTH_MAGIC : XTG_MAGIC;
if (pageHeader.magic != expectedMagic) {
Serial.printf("[%lu] [XTC] Invalid page magic for page %u: 0x%08X (expected 0x%08X)\n", millis(), pageIndex,
pageHeader.magic, expectedMagic);
m_lastError = XtcError::INVALID_MAGIC;
return 0;
}
// Calculate bitmap size based on bit depth
// XTG (1-bit): Row-major, ((width+7)/8) * height bytes
// XTH (2-bit): Two bit planes, column-major, ((width * height + 7) / 8) * 2 bytes
size_t bitmapSize;
if (m_bitDepth == 2) {
// XTH: two bit planes, each containing (width * height) bits rounded up to bytes
bitmapSize = ((static_cast<size_t>(pageHeader.width) * pageHeader.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageHeader.width + 7) / 8) * pageHeader.height;
}
// Check buffer size
if (bufferSize < bitmapSize) {
Serial.printf("[%lu] [XTC] Buffer too small: need %u, have %u\n", millis(), bitmapSize, bufferSize);
m_lastError = XtcError::MEMORY_ERROR;
return 0;
}
// Read bitmap data
size_t bytesRead = m_file.read(buffer, bitmapSize);
if (bytesRead != bitmapSize) {
Serial.printf("[%lu] [XTC] Page read error: expected %u, got %u\n", millis(), bitmapSize, bytesRead);
m_lastError = XtcError::READ_ERROR;
return 0;
}
m_lastError = XtcError::OK;
return bytesRead;
}
XtcError XtcParser::loadPageStreaming(uint32_t pageIndex,
std::function<void(const uint8_t* data, size_t size, size_t offset)> callback,
size_t chunkSize) {
if (!m_isOpen) {
return XtcError::FILE_NOT_FOUND;
}
if (pageIndex >= m_header.pageCount) {
return XtcError::PAGE_OUT_OF_RANGE;
}
const PageInfo& page = m_pageTable[pageIndex];
// Seek to page data
if (!m_file.seek(page.offset)) {
return XtcError::READ_ERROR;
}
// Read and skip page header (XTG for 1-bit, XTH for 2-bit)
XtgPageHeader pageHeader;
size_t headerRead = m_file.read(reinterpret_cast<uint8_t*>(&pageHeader), sizeof(XtgPageHeader));
const uint32_t expectedMagic = (m_bitDepth == 2) ? XTH_MAGIC : XTG_MAGIC;
if (headerRead != sizeof(XtgPageHeader) || pageHeader.magic != expectedMagic) {
return XtcError::READ_ERROR;
}
// Calculate bitmap size based on bit depth
// XTG (1-bit): Row-major, ((width+7)/8) * height bytes
// XTH (2-bit): Two bit planes, ((width * height + 7) / 8) * 2 bytes
size_t bitmapSize;
if (m_bitDepth == 2) {
bitmapSize = ((static_cast<size_t>(pageHeader.width) * pageHeader.height + 7) / 8) * 2;
} else {
bitmapSize = ((pageHeader.width + 7) / 8) * pageHeader.height;
}
// Read in chunks
std::vector<uint8_t> chunk(chunkSize);
size_t totalRead = 0;
while (totalRead < bitmapSize) {
size_t toRead = std::min(chunkSize, bitmapSize - totalRead);
size_t bytesRead = m_file.read(chunk.data(), toRead);
if (bytesRead == 0) {
return XtcError::READ_ERROR;
}
callback(chunk.data(), bytesRead, totalRead);
totalRead += bytesRead;
}
return XtcError::OK;
}
bool XtcParser::isValidXtcFile(const char* filepath) {
FsFile file;
if (!SdMan.openFileForRead("XTC", filepath, file)) {
return false;
}
uint32_t magic = 0;
size_t bytesRead = file.read(reinterpret_cast<uint8_t*>(&magic), sizeof(magic));
file.close();
if (bytesRead != sizeof(magic)) {
return false;
}
return (magic == XTC_MAGIC || magic == XTCH_MAGIC);
}
} // namespace xtc

View File

@@ -1,102 +0,0 @@
/**
* XtcParser.h
*
* XTC file parsing and page data extraction
* XTC ebook support for CrossPoint Reader
*/
#pragma once
#include <SdFat.h>
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "XtcTypes.h"
namespace xtc {
/**
* XTC File Parser
*
* Reads XTC files from SD card and extracts page data.
* Designed for ESP32-C3's limited RAM (~380KB) using streaming.
*/
class XtcParser {
public:
XtcParser();
~XtcParser();
// File open/close
XtcError open(const char* filepath);
void close();
bool isOpen() const { return m_isOpen; }
// Header information access
const XtcHeader& getHeader() const { return m_header; }
uint16_t getPageCount() const { return m_header.pageCount; }
uint16_t getWidth() const { return m_defaultWidth; }
uint16_t getHeight() const { return m_defaultHeight; }
uint8_t getBitDepth() const { return m_bitDepth; } // 1 = XTC/XTG, 2 = XTCH/XTH
// Page information
bool getPageInfo(uint32_t pageIndex, PageInfo& info) const;
/**
* Load page bitmap (raw 1-bit data, skipping XTG header)
*
* @param pageIndex Page index (0-based)
* @param buffer Output buffer (caller allocated)
* @param bufferSize Buffer size
* @return Number of bytes read on success, 0 on failure
*/
size_t loadPage(uint32_t pageIndex, uint8_t* buffer, size_t bufferSize);
/**
* Streaming page load
* Memory-efficient method that reads page data in chunks.
*
* @param pageIndex Page index
* @param callback Callback function to receive data chunks
* @param chunkSize Chunk size (default: 1024 bytes)
* @return Error code
*/
XtcError loadPageStreaming(uint32_t pageIndex,
std::function<void(const uint8_t* data, size_t size, size_t offset)> callback,
size_t chunkSize = 1024);
// Get title from metadata
std::string getTitle() const { return m_title; }
bool hasChapters() const { return m_hasChapters; }
const std::vector<ChapterInfo>& getChapters() const { return m_chapters; }
// Validation
static bool isValidXtcFile(const char* filepath);
// Error information
XtcError getLastError() const { return m_lastError; }
private:
FsFile m_file;
bool m_isOpen;
XtcHeader m_header;
std::vector<PageInfo> m_pageTable;
std::vector<ChapterInfo> m_chapters;
std::string m_title;
uint16_t m_defaultWidth;
uint16_t m_defaultHeight;
uint8_t m_bitDepth; // 1 = XTC/XTG (1-bit), 2 = XTCH/XTH (2-bit)
bool m_hasChapters;
XtcError m_lastError;
// Internal helper functions
XtcError readHeader();
XtcError readPageTable();
XtcError readTitle();
XtcError readChapters();
};
} // namespace xtc

View File

@@ -1,155 +0,0 @@
/**
* XtcTypes.h
*
* XTC file format type definitions
* XTC ebook support for CrossPoint Reader
*
* XTC is the native binary ebook format for XTeink X4 e-reader.
* It stores pre-rendered bitmap images per page.
*
* Format based on EPUB2XTC converter by Rafal-P-Mazur
*/
#pragma once
#include <cstdint>
#include <string>
namespace xtc {
// XTC file magic numbers (little-endian)
// "XTC\0" = 0x58, 0x54, 0x43, 0x00
constexpr uint32_t XTC_MAGIC = 0x00435458; // "XTC\0" in little-endian (1-bit fast mode)
// "XTCH" = 0x58, 0x54, 0x43, 0x48
constexpr uint32_t XTCH_MAGIC = 0x48435458; // "XTCH" in little-endian (2-bit high quality mode)
// "XTG\0" = 0x58, 0x54, 0x47, 0x00
constexpr uint32_t XTG_MAGIC = 0x00475458; // "XTG\0" for 1-bit page data
// "XTH\0" = 0x58, 0x54, 0x48, 0x00
constexpr uint32_t XTH_MAGIC = 0x00485458; // "XTH\0" for 2-bit page data
// XTeink X4 display resolution
constexpr uint16_t DISPLAY_WIDTH = 480;
constexpr uint16_t DISPLAY_HEIGHT = 800;
// XTC file header (56 bytes)
#pragma pack(push, 1)
struct XtcHeader {
uint32_t magic; // 0x00: Magic number "XTC\0" (0x00435458)
uint8_t versionMajor; // 0x04: Format version major (typically 1) (together with minor = 1.0)
uint8_t versionMinor; // 0x05: Format version minor (typically 0)
uint16_t pageCount; // 0x06: Total page count
uint32_t flags; // 0x08: Flags/reserved
uint32_t headerSize; // 0x0C: Size of header section (typically 88)
uint32_t reserved1; // 0x10: Reserved
uint32_t tocOffset; // 0x14: TOC offset (0 if unused) - 4 bytes, not 8!
uint64_t pageTableOffset; // 0x18: Page table offset
uint64_t dataOffset; // 0x20: First page data offset
uint64_t reserved2; // 0x28: Reserved
uint32_t titleOffset; // 0x30: Title string offset
uint32_t padding; // 0x34: Padding to 56 bytes
};
#pragma pack(pop)
// Page table entry (16 bytes per page)
#pragma pack(push, 1)
struct PageTableEntry {
uint64_t dataOffset; // 0x00: Absolute offset to page data
uint32_t dataSize; // 0x08: Page data size in bytes
uint16_t width; // 0x0C: Page width (480)
uint16_t height; // 0x0E: Page height (800)
};
#pragma pack(pop)
// XTG/XTH page data header (22 bytes)
// Used for both 1-bit (XTG) and 2-bit (XTH) formats
#pragma pack(push, 1)
struct XtgPageHeader {
uint32_t magic; // 0x00: File identifier (XTG: 0x00475458, XTH: 0x00485458)
uint16_t width; // 0x04: Image width (pixels)
uint16_t height; // 0x06: Image height (pixels)
uint8_t colorMode; // 0x08: Color mode (0=monochrome)
uint8_t compression; // 0x09: Compression (0=uncompressed)
uint32_t dataSize; // 0x0A: Image data size (bytes)
uint64_t md5; // 0x0E: MD5 checksum (first 8 bytes, optional)
// Followed by bitmap data at offset 0x16 (22)
//
// XTG (1-bit): Row-major, 8 pixels/byte, MSB first
// dataSize = ((width + 7) / 8) * height
//
// XTH (2-bit): Two bit planes, column-major (right-to-left), 8 vertical pixels/byte
// dataSize = ((width * height + 7) / 8) * 2
// First plane: Bit1 for all pixels
// Second plane: Bit2 for all pixels
// pixelValue = (bit1 << 1) | bit2
};
#pragma pack(pop)
// Page information (internal use, optimized for memory)
struct PageInfo {
uint32_t offset; // File offset to page data (max 4GB file size)
uint32_t size; // Data size (bytes)
uint16_t width; // Page width
uint16_t height; // Page height
uint8_t bitDepth; // 1 = XTG (1-bit), 2 = XTH (2-bit grayscale)
uint8_t padding; // Alignment padding
}; // 16 bytes total
struct ChapterInfo {
std::string name;
uint16_t startPage;
uint16_t endPage;
};
// Error codes
enum class XtcError {
OK = 0,
FILE_NOT_FOUND,
INVALID_MAGIC,
INVALID_VERSION,
CORRUPTED_HEADER,
PAGE_OUT_OF_RANGE,
READ_ERROR,
WRITE_ERROR,
MEMORY_ERROR,
DECOMPRESSION_ERROR,
};
// Convert error code to string
inline const char* errorToString(XtcError err) {
switch (err) {
case XtcError::OK:
return "OK";
case XtcError::FILE_NOT_FOUND:
return "File not found";
case XtcError::INVALID_MAGIC:
return "Invalid magic number";
case XtcError::INVALID_VERSION:
return "Unsupported version";
case XtcError::CORRUPTED_HEADER:
return "Corrupted header";
case XtcError::PAGE_OUT_OF_RANGE:
return "Page out of range";
case XtcError::READ_ERROR:
return "Read error";
case XtcError::WRITE_ERROR:
return "Write error";
case XtcError::MEMORY_ERROR:
return "Memory allocation error";
case XtcError::DECOMPRESSION_ERROR:
return "Decompression error";
default:
return "Unknown error";
}
}
/**
* Check if filename has XTC/XTCH extension
*/
inline bool isXtcExtension(const char* filename) {
if (!filename) return false;
const char* ext = strrchr(filename, '.');
if (!ext) return false;
return (strcasecmp(ext, ".xtc") == 0 || strcasecmp(ext, ".xtch") == 0);
}
} // namespace xtc