#include "Bitmap.h" #include #include // ============================================================================ // IMAGE PROCESSING OPTIONS - Toggle these to test different configurations // ============================================================================ // Note: For cover images, dithering is done in JpegToBmpConverter.cpp // This file handles BMP reading - use simple quantization to avoid double-dithering constexpr bool USE_ATKINSON = true; // Use Atkinson dithering instead of Floyd-Steinberg // ============================================================================ Bitmap::~Bitmap() { delete[] errorCurRow; delete[] errorNextRow; delete atkinsonDitherer; delete fsDitherer; } uint16_t Bitmap::readLE16(FsFile& f) { const int c0 = f.read(); const int c1 = f.read(); const auto b0 = static_cast(c0 < 0 ? 0 : c0); const auto b1 = static_cast(c1 < 0 ? 0 : c1); return static_cast(b0) | (static_cast(b1) << 8); } uint32_t Bitmap::readLE32(FsFile& f) { const int c0 = f.read(); const int c1 = f.read(); const int c2 = f.read(); const int c3 = f.read(); const auto b0 = static_cast(c0 < 0 ? 0 : c0); const auto b1 = static_cast(c1 < 0 ? 0 : c1); const auto b2 = static_cast(c2 < 0 ? 0 : c2); const auto b3 = static_cast(c3 < 0 ? 0 : c3); return static_cast(b0) | (static_cast(b1) << 8) | (static_cast(b2) << 16) | (static_cast(b3) << 24); } const char* Bitmap::errorToString(BmpReaderError err) { switch (err) { case BmpReaderError::Ok: return "Ok"; case BmpReaderError::FileInvalid: return "FileInvalid"; case BmpReaderError::SeekStartFailed: return "SeekStartFailed"; case BmpReaderError::NotBMP: return "NotBMP (missing 'BM')"; case BmpReaderError::DIBTooSmall: return "DIBTooSmall (<40 bytes)"; case BmpReaderError::BadPlanes: return "BadPlanes (!= 1)"; case BmpReaderError::UnsupportedBpp: return "UnsupportedBpp (expected 1, 2, 8, 24, or 32)"; case BmpReaderError::UnsupportedCompression: return "UnsupportedCompression (expected BI_RGB or BI_BITFIELDS for 32bpp)"; case BmpReaderError::BadDimensions: return "BadDimensions"; case BmpReaderError::ImageTooLarge: return "ImageTooLarge (max 2048x3072)"; case BmpReaderError::PaletteTooLarge: return "PaletteTooLarge"; case BmpReaderError::SeekPixelDataFailed: return "SeekPixelDataFailed"; case BmpReaderError::BufferTooSmall: return "BufferTooSmall"; case BmpReaderError::OomRowBuffer: return "OomRowBuffer"; case BmpReaderError::ShortReadRow: return "ShortReadRow"; } return "Unknown"; } BmpReaderError Bitmap::parseHeaders() { if (!file) return BmpReaderError::FileInvalid; if (!file.seek(0)) return BmpReaderError::SeekStartFailed; // --- BMP FILE HEADER --- const uint16_t bfType = readLE16(file); if (bfType != 0x4D42) return BmpReaderError::NotBMP; file.seekCur(8); bfOffBits = readLE32(file); // --- DIB HEADER --- const uint32_t biSize = readLE32(file); if (biSize < 40) return BmpReaderError::DIBTooSmall; width = static_cast(readLE32(file)); const auto rawHeight = static_cast(readLE32(file)); topDown = rawHeight < 0; height = topDown ? -rawHeight : rawHeight; const uint16_t planes = readLE16(file); bpp = readLE16(file); const uint32_t comp = readLE32(file); const bool validBpp = bpp == 1 || bpp == 2 || bpp == 8 || bpp == 24 || bpp == 32; if (planes != 1) return BmpReaderError::BadPlanes; if (!validBpp) return BmpReaderError::UnsupportedBpp; // Allow BI_RGB (0) for all, and BI_BITFIELDS (3) for 32bpp which is common for BGRA masks. if (!(comp == 0 || (bpp == 32 && comp == 3))) return BmpReaderError::UnsupportedCompression; file.seekCur(12); // biSizeImage, biXPelsPerMeter, biYPelsPerMeter const uint32_t colorsUsed = readLE32(file); if (colorsUsed > 256u) return BmpReaderError::PaletteTooLarge; file.seekCur(4); // biClrImportant if (width <= 0 || height <= 0) return BmpReaderError::BadDimensions; // Safety limits to prevent memory issues on ESP32 constexpr int MAX_IMAGE_WIDTH = 2048; constexpr int MAX_IMAGE_HEIGHT = 3072; if (width > MAX_IMAGE_WIDTH || height > MAX_IMAGE_HEIGHT) { return BmpReaderError::ImageTooLarge; } // Pre-calculate Row Bytes to avoid doing this every row rowBytes = (width * bpp + 31) / 32 * 4; for (int i = 0; i < 256; i++) paletteLum[i] = static_cast(i); if (colorsUsed > 0) { for (uint32_t i = 0; i < colorsUsed; i++) { uint8_t rgb[4]; file.read(rgb, 4); // Read B, G, R, Reserved in one go paletteLum[i] = (77u * rgb[2] + 150u * rgb[1] + 29u * rgb[0]) >> 8; } } if (!file.seek(bfOffBits)) { return BmpReaderError::SeekPixelDataFailed; } // Create ditherer if enabled (only for 2-bit output) // Use OUTPUT dimensions for dithering (after prescaling) if (bpp > 2 && dithering) { if (USE_ATKINSON) { atkinsonDitherer = new AtkinsonDitherer(width); } else { fsDitherer = new FloydSteinbergDitherer(width); } } return BmpReaderError::Ok; } // packed 2bpp output, 0 = black, 1 = dark gray, 2 = light gray, 3 = white BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const { // Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes' if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow; prevRowY += 1; uint8_t* outPtr = data; uint8_t currentOutByte = 0; int bitShift = 6; int currentX = 0; // Helper lambda to pack 2bpp color into the output stream auto packPixel = [&](const uint8_t lum) { uint8_t color; if (atkinsonDitherer) { color = atkinsonDitherer->processPixel(adjustPixel(lum), currentX); } else if (fsDitherer) { color = fsDitherer->processPixel(adjustPixel(lum), currentX); } else { if (bpp > 2) { // Simple quantization or noise dithering color = quantize(adjustPixel(lum), currentX, prevRowY); } else { // do not quantize 2bpp image color = static_cast(lum >> 6); } } currentOutByte |= (color << bitShift); if (bitShift == 0) { *outPtr++ = currentOutByte; currentOutByte = 0; bitShift = 6; } else { bitShift -= 2; } currentX++; }; uint8_t lum; switch (bpp) { case 32: { const uint8_t* p = rowBuffer; for (int x = 0; x < width; x++) { lum = (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8; packPixel(lum); p += 4; } break; } case 24: { const uint8_t* p = rowBuffer; for (int x = 0; x < width; x++) { lum = (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8; packPixel(lum); p += 3; } break; } case 8: { for (int x = 0; x < width; x++) { packPixel(paletteLum[rowBuffer[x]]); } break; } case 2: { for (int x = 0; x < width; x++) { lum = paletteLum[(rowBuffer[x >> 2] >> (6 - ((x & 3) * 2))) & 0x03]; packPixel(lum); } break; } case 1: { for (int x = 0; x < width; x++) { // Get palette index (0 or 1) from bit at position x const uint8_t palIndex = (rowBuffer[x >> 3] & (0x80 >> (x & 7))) ? 1 : 0; // Use palette lookup for proper black/white mapping lum = paletteLum[palIndex]; packPixel(lum); } break; } default: return BmpReaderError::UnsupportedBpp; } if (atkinsonDitherer) atkinsonDitherer->nextRow(); else if (fsDitherer) fsDitherer->nextRow(); // Flush remaining bits if width is not a multiple of 4 if (bitShift != 6) *outPtr = currentOutByte; return BmpReaderError::Ok; } BmpReaderError Bitmap::rewindToData() const { if (!file.seek(bfOffBits)) { return BmpReaderError::SeekPixelDataFailed; } // Reset dithering when rewinding if (fsDitherer) fsDitherer->reset(); if (atkinsonDitherer) atkinsonDitherer->reset(); return BmpReaderError::Ok; } bool Bitmap::detectPerimeterIsBlack() const { // Detect if the 1-pixel perimeter of the image is mostly black or white. // Returns true if mostly black (luminance < 128), false if mostly white. if (width <= 0 || height <= 0) return false; auto* rowBuffer = static_cast(malloc(rowBytes)); if (!rowBuffer) return false; int blackCount = 0; int whiteCount = 0; // Helper lambda to get luminance from a pixel at position x in rowBuffer auto getLuminance = [&](int x) -> uint8_t { switch (bpp) { case 32: { const uint8_t* p = rowBuffer + x * 4; return (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8; } case 24: { const uint8_t* p = rowBuffer + x * 3; return (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8; } case 8: return paletteLum[rowBuffer[x]]; case 2: return paletteLum[(rowBuffer[x >> 2] >> (6 - ((x & 3) * 2))) & 0x03]; case 1: { const uint8_t palIndex = (rowBuffer[x >> 3] & (0x80 >> (x & 7))) ? 1 : 0; return paletteLum[palIndex]; } default: return 128; // Neutral if unsupported } }; // Helper to classify and count a pixel auto countPixel = [&](int x) { const uint8_t lum = getLuminance(x); if (lum < 128) { blackCount++; } else { whiteCount++; } }; // Helper to seek to a specific image row (accounting for top-down vs bottom-up) auto seekToRow = [&](int imageRow) -> bool { // In bottom-up BMP (topDown=false), row 0 in file is the bottom row of image // In top-down BMP (topDown=true), row 0 in file is the top row of image int fileRow = topDown ? imageRow : (height - 1 - imageRow); return file.seek(bfOffBits + static_cast(fileRow) * rowBytes); }; // Sample top row (image row 0) - all pixels if (seekToRow(0) && file.read(rowBuffer, rowBytes) == rowBytes) { for (int x = 0; x < width; x++) { countPixel(x); } } // Sample bottom row (image row height-1) - all pixels if (height > 1) { if (seekToRow(height - 1) && file.read(rowBuffer, rowBytes) == rowBytes) { for (int x = 0; x < width; x++) { countPixel(x); } } } // Sample left and right edges from intermediate rows for (int y = 1; y < height - 1; y++) { if (seekToRow(y) && file.read(rowBuffer, rowBytes) == rowBytes) { countPixel(0); // Left edge countPixel(width - 1); // Right edge } } free(rowBuffer); // Rewind file position for subsequent drawing rewindToData(); // Return true if perimeter is mostly black return blackCount > whiteCount; }