1. Refactor Bitmap.cpp/h to expose the options for FloydSteinberg and brightness/gamma correction at runtime 2. Fine-tune the thresholds for Floyd Steiberg and simple quantization to better match the display's colors Turns out that 2 is enough to make the images render properly, so the brightness boost and gamma adjustment doesn't seem necessary currently (at least for my test image).
91 lines
3.0 KiB
C++
91 lines
3.0 KiB
C++
#include "BitmapHelpers.h"
|
|
|
|
#include <cstdint>
|
|
|
|
// Brightness/Contrast adjustments:
|
|
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
|
|
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
|
|
constexpr bool GAMMA_CORRECTION = false; // Gamma curve (brightens midtones)
|
|
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
|
|
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
|
|
|
|
// Integer approximation of gamma correction (brightens midtones)
|
|
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
|
|
static inline int applyGamma(int gray) {
|
|
if (!GAMMA_CORRECTION) return gray;
|
|
// Fast integer square root approximation for gamma ~0.5 (brightening)
|
|
// This brightens dark/mid tones while preserving highlights
|
|
const int product = gray * 255;
|
|
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
|
|
int x = gray;
|
|
if (x > 0) {
|
|
x = (x + product / x) >> 1;
|
|
x = (x + product / x) >> 1;
|
|
}
|
|
return x > 255 ? 255 : x;
|
|
}
|
|
|
|
// Apply contrast adjustment around midpoint (128)
|
|
// factor > 1.0 increases contrast, < 1.0 decreases
|
|
static inline int applyContrast(int gray) {
|
|
// Integer-based contrast: (gray - 128) * factor + 128
|
|
// Using fixed-point: factor 1.15 ≈ 115/100
|
|
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
|
|
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
|
|
if (adjusted < 0) adjusted = 0;
|
|
if (adjusted > 255) adjusted = 255;
|
|
return adjusted;
|
|
}
|
|
// Combined brightness/contrast/gamma adjustment
|
|
int adjustPixel(int gray) {
|
|
if (!USE_BRIGHTNESS) return gray;
|
|
|
|
// Order: contrast first, then brightness, then gamma
|
|
gray = applyContrast(gray);
|
|
gray += BRIGHTNESS_BOOST;
|
|
if (gray > 255) gray = 255;
|
|
if (gray < 0) gray = 0;
|
|
gray = applyGamma(gray);
|
|
|
|
return gray;
|
|
}
|
|
// Simple quantization without dithering - divide into 4 levels
|
|
// The thresholds are fine-tuned to the X4 display
|
|
uint8_t quantizeSimple(int gray) {
|
|
if (gray < 45) {
|
|
return 0;
|
|
} else if (gray < 70) {
|
|
return 1;
|
|
} else if (gray < 140) {
|
|
return 2;
|
|
} else {
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
// Hash-based noise dithering - survives downsampling without moiré artifacts
|
|
// Uses integer hash to generate pseudo-random threshold per pixel
|
|
static inline uint8_t quantizeNoise(int gray, int x, int y) {
|
|
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
|
|
hash = (hash ^ (hash >> 13)) * 1274126177u;
|
|
const int threshold = static_cast<int>(hash >> 24);
|
|
|
|
const int scaled = gray * 3;
|
|
if (scaled < 255) {
|
|
return (scaled + threshold >= 255) ? 1 : 0;
|
|
} else if (scaled < 510) {
|
|
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
|
|
} else {
|
|
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
|
|
}
|
|
}
|
|
|
|
// Main quantization function - selects between methods based on config
|
|
uint8_t quantize(int gray, int x, int y) {
|
|
if (USE_NOISE_DITHERING) {
|
|
return quantizeNoise(gray, x, y);
|
|
} else {
|
|
return quantizeSimple(gray);
|
|
}
|
|
}
|