crosspoint-reader/lib/JpegToBmpConverter/JpegToBmpConverter.cpp
Jonas Diemer afe9672156
Feature/cover crop mode (#225)
Added a setting to select `fit` or `crop` for cover image on sleep
screen.

Might add a `expand` feature in the future that does not crop but rather
fills the blank space with a mirror of the image.

---------

Co-authored-by: Dave Allie <dave@daveallie.com>
2026-01-05 21:07:27 +11:00

741 lines
26 KiB
C++

#include "JpegToBmpConverter.h"
#include <HardwareSerial.h>
#include <SdFat.h>
#include <picojpeg.h>
#include <cstdio>
#include <cstring>
// Context structure for picojpeg callback
struct JpegReadContext {
FsFile& file;
uint8_t buffer[512];
size_t bufferPos;
size_t bufferFilled;
};
// ============================================================================
// IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
// ============================================================================
constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantization), false: 2-bit (4 levels)
// Dithering method selection (only one should be true, or all false for simple quantization):
constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
// Brightness/Contrast adjustments:
constexpr bool USE_BRIGHTNESS = true; // true: apply brightness/gamma adjustments
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
constexpr bool GAMMA_CORRECTION = true; // Gamma curve (brightens midtones)
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
// ============================================================================
// Integer approximation of gamma correction (brightens midtones)
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
static inline int applyGamma(int gray) {
if (!GAMMA_CORRECTION) return gray;
// Fast integer square root approximation for gamma ~0.5 (brightening)
// This brightens dark/mid tones while preserving highlights
const int product = gray * 255;
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
int x = gray;
if (x > 0) {
x = (x + product / x) >> 1;
x = (x + product / x) >> 1;
}
return x > 255 ? 255 : x;
}
// Apply contrast adjustment around midpoint (128)
// factor > 1.0 increases contrast, < 1.0 decreases
static inline int applyContrast(int gray) {
// Integer-based contrast: (gray - 128) * factor + 128
// Using fixed-point: factor 1.15 ≈ 115/100
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
return adjusted;
}
// Combined brightness/contrast/gamma adjustment
static inline int adjustPixel(int gray) {
if (!USE_BRIGHTNESS) return gray;
// Order: contrast first, then brightness, then gamma
gray = applyContrast(gray);
gray += BRIGHTNESS_BOOST;
if (gray > 255) gray = 255;
if (gray < 0) gray = 0;
gray = applyGamma(gray);
return gray;
}
// Simple quantization without dithering - just divide into 4 levels
static inline uint8_t quantizeSimple(int gray) {
gray = adjustPixel(gray);
// Simple 2-bit quantization: 0-63=0, 64-127=1, 128-191=2, 192-255=3
return static_cast<uint8_t>(gray >> 6);
}
// Hash-based noise dithering - survives downsampling without moiré artifacts
// Uses integer hash to generate pseudo-random threshold per pixel
static inline uint8_t quantizeNoise(int gray, int x, int y) {
gray = adjustPixel(gray);
// Generate noise threshold using integer hash (no regular pattern to alias)
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
hash = (hash ^ (hash >> 13)) * 1274126177u;
const int threshold = static_cast<int>(hash >> 24); // 0-255
// Map gray (0-255) to 4 levels with dithering
const int scaled = gray * 3;
if (scaled < 255) {
return (scaled + threshold >= 255) ? 1 : 0;
} else if (scaled < 510) {
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
} else {
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
}
}
// Main quantization function - selects between methods based on config
static inline uint8_t quantize(int gray, int x, int y) {
if (USE_NOISE_DITHERING) {
return quantizeNoise(gray, x, y);
} else {
return quantizeSimple(gray);
}
}
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
// Error distribution pattern:
// X 1/8 1/8
// 1/8 1/8 1/8
// 1/8
// Less error buildup = fewer artifacts than Floyd-Steinberg
class AtkinsonDitherer {
public:
AtkinsonDitherer(int width) : width(width) {
errorRow0 = new int16_t[width + 4](); // Current row
errorRow1 = new int16_t[width + 4](); // Next row
errorRow2 = new int16_t[width + 4](); // Row after next
}
~AtkinsonDitherer() {
delete[] errorRow0;
delete[] errorRow1;
delete[] errorRow2;
}
uint8_t processPixel(int gray, int x) {
// Apply brightness/contrast/gamma adjustments
gray = adjustPixel(gray);
// Add accumulated error
int adjusted = gray + errorRow0[x + 2];
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error (only distribute 6/8 = 75%)
int error = (adjusted - quantizedValue) >> 3; // error/8
// Distribute 1/8 to each of 6 neighbors
errorRow0[x + 3] += error; // Right
errorRow0[x + 4] += error; // Right+1
errorRow1[x + 1] += error; // Bottom-left
errorRow1[x + 2] += error; // Bottom
errorRow1[x + 3] += error; // Bottom-right
errorRow2[x + 2] += error; // Two rows down
return quantized;
}
void nextRow() {
int16_t* temp = errorRow0;
errorRow0 = errorRow1;
errorRow1 = errorRow2;
errorRow2 = temp;
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
void reset() {
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
}
private:
int width;
int16_t* errorRow0;
int16_t* errorRow1;
int16_t* errorRow2;
};
// Floyd-Steinberg error diffusion dithering with serpentine scanning
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
// Error distribution pattern (left-to-right):
// X 7/16
// 3/16 5/16 1/16
// Error distribution pattern (right-to-left, mirrored):
// 1/16 5/16 3/16
// 7/16 X
class FloydSteinbergDitherer {
public:
FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
errorNextRow = new int16_t[width + 2]();
}
~FloydSteinbergDitherer() {
delete[] errorCurRow;
delete[] errorNextRow;
}
// Process a single pixel and return quantized 2-bit value
// x is the logical x position (0 to width-1), direction handled internally
uint8_t processPixel(int gray, int x, bool reverseDirection) {
// Add accumulated error to this pixel
int adjusted = gray + errorCurRow[x + 1];
// Clamp to valid range
if (adjusted < 0) adjusted = 0;
if (adjusted > 255) adjusted = 255;
// Quantize to 4 levels (0, 85, 170, 255)
uint8_t quantized;
int quantizedValue;
if (adjusted < 43) {
quantized = 0;
quantizedValue = 0;
} else if (adjusted < 128) {
quantized = 1;
quantizedValue = 85;
} else if (adjusted < 213) {
quantized = 2;
quantizedValue = 170;
} else {
quantized = 3;
quantizedValue = 255;
}
// Calculate error
int error = adjusted - quantizedValue;
// Distribute error to neighbors (serpentine: direction-aware)
if (!reverseDirection) {
// Left to right: standard distribution
// Right: 7/16
errorCurRow[x + 2] += (error * 7) >> 4;
// Bottom-left: 3/16
errorNextRow[x] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-right: 1/16
errorNextRow[x + 2] += (error) >> 4;
} else {
// Right to left: mirrored distribution
// Left: 7/16
errorCurRow[x] += (error * 7) >> 4;
// Bottom-right: 3/16
errorNextRow[x + 2] += (error * 3) >> 4;
// Bottom: 5/16
errorNextRow[x + 1] += (error * 5) >> 4;
// Bottom-left: 1/16
errorNextRow[x] += (error) >> 4;
}
return quantized;
}
// Call at the end of each row to swap buffers
void nextRow() {
// Swap buffers
int16_t* temp = errorCurRow;
errorCurRow = errorNextRow;
errorNextRow = temp;
// Clear the next row buffer
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount++;
}
// Check if current row should be processed in reverse
bool isReverseRow() const { return (rowCount & 1) != 0; }
// Reset for a new image or MCU block
void reset() {
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
rowCount = 0;
}
private:
int width;
int rowCount;
int16_t* errorCurRow;
int16_t* errorNextRow;
};
inline void write16(Print& out, const uint16_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
}
inline void write32(Print& out, const uint32_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF);
}
inline void write32Signed(Print& out, const int32_t value) {
out.write(value & 0xFF);
out.write((value >> 8) & 0xFF);
out.write((value >> 16) & 0xFF);
out.write((value >> 24) & 0xFF);
}
// Helper function: Write BMP header with 8-bit grayscale (256 levels)
void writeBmpHeader8bit(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width + 3) / 4 * 4; // 8 bits per pixel, padded
const int imageSize = bytesPerRow * height;
const uint32_t paletteSize = 256 * 4; // 256 colors * 4 bytes (BGRA)
const uint32_t fileSize = 14 + 40 + paletteSize + imageSize;
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize);
write32(bmpOut, 0); // Reserved
write32(bmpOut, 14 + 40 + paletteSize); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 8); // Bits per pixel (8 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 256); // colorsUsed
write32(bmpOut, 256); // colorsImportant
// Color Palette (256 grayscale entries x 4 bytes = 1024 bytes)
for (int i = 0; i < 256; i++) {
bmpOut.write(static_cast<uint8_t>(i)); // Blue
bmpOut.write(static_cast<uint8_t>(i)); // Green
bmpOut.write(static_cast<uint8_t>(i)); // Red
bmpOut.write(static_cast<uint8_t>(0)); // Reserved
}
}
// Helper function: Write BMP header with 2-bit color depth
void JpegToBmpConverter::writeBmpHeader(Print& bmpOut, const int width, const int height) {
// Calculate row padding (each row must be multiple of 4 bytes)
const int bytesPerRow = (width * 2 + 31) / 32 * 4; // 2 bits per pixel, round up
const int imageSize = bytesPerRow * height;
const uint32_t fileSize = 70 + imageSize; // 14 (file header) + 40 (DIB header) + 16 (palette) + image
// BMP File Header (14 bytes)
bmpOut.write('B');
bmpOut.write('M');
write32(bmpOut, fileSize); // File size
write32(bmpOut, 0); // Reserved
write32(bmpOut, 70); // Offset to pixel data
// DIB Header (BITMAPINFOHEADER - 40 bytes)
write32(bmpOut, 40);
write32Signed(bmpOut, width);
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
write16(bmpOut, 1); // Color planes
write16(bmpOut, 2); // Bits per pixel (2 bits)
write32(bmpOut, 0); // BI_RGB (no compression)
write32(bmpOut, imageSize);
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
write32(bmpOut, 4); // colorsUsed
write32(bmpOut, 4); // colorsImportant
// Color Palette (4 colors x 4 bytes = 16 bytes)
// Format: Blue, Green, Red, Reserved (BGRA)
uint8_t palette[16] = {
0x00, 0x00, 0x00, 0x00, // Color 0: Black
0x55, 0x55, 0x55, 0x00, // Color 1: Dark gray (85)
0xAA, 0xAA, 0xAA, 0x00, // Color 2: Light gray (170)
0xFF, 0xFF, 0xFF, 0x00 // Color 3: White
};
for (const uint8_t i : palette) {
bmpOut.write(i);
}
}
// Callback function for picojpeg to read JPEG data
unsigned char JpegToBmpConverter::jpegReadCallback(unsigned char* pBuf, const unsigned char buf_size,
unsigned char* pBytes_actually_read, void* pCallback_data) {
auto* context = static_cast<JpegReadContext*>(pCallback_data);
if (!context || !context->file) {
return PJPG_STREAM_READ_ERROR;
}
// Check if we need to refill our context buffer
if (context->bufferPos >= context->bufferFilled) {
context->bufferFilled = context->file.read(context->buffer, sizeof(context->buffer));
context->bufferPos = 0;
if (context->bufferFilled == 0) {
// EOF or error
*pBytes_actually_read = 0;
return 0; // Success (EOF is normal)
}
}
// Copy available bytes to picojpeg's buffer
const size_t available = context->bufferFilled - context->bufferPos;
const size_t toRead = available < buf_size ? available : buf_size;
memcpy(pBuf, context->buffer + context->bufferPos, toRead);
context->bufferPos += toRead;
*pBytes_actually_read = static_cast<unsigned char>(toRead);
return 0; // Success
}
// Core function: Convert JPEG file to 2-bit BMP
bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
Serial.printf("[%lu] [JPG] Converting JPEG to BMP\n", millis());
// Setup context for picojpeg callback
JpegReadContext context = {.file = jpegFile, .bufferPos = 0, .bufferFilled = 0};
// Initialize picojpeg decoder
pjpeg_image_info_t imageInfo;
const unsigned char status = pjpeg_decode_init(&imageInfo, jpegReadCallback, &context, 0);
if (status != 0) {
Serial.printf("[%lu] [JPG] JPEG decode init failed with error code: %d\n", millis(), status);
return false;
}
Serial.printf("[%lu] [JPG] JPEG dimensions: %dx%d, components: %d, MCUs: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, imageInfo.m_comps, imageInfo.m_MCUSPerRow, imageInfo.m_MCUSPerCol);
// Safety limits to prevent memory issues on ESP32
constexpr int MAX_IMAGE_WIDTH = 2048;
constexpr int MAX_IMAGE_HEIGHT = 3072;
constexpr int MAX_MCU_ROW_BYTES = 65536;
if (imageInfo.m_width > MAX_IMAGE_WIDTH || imageInfo.m_height > MAX_IMAGE_HEIGHT) {
Serial.printf("[%lu] [JPG] Image too large (%dx%d), max supported: %dx%d\n", millis(), imageInfo.m_width,
imageInfo.m_height, MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT);
return false;
}
// Calculate output dimensions (pre-scale to fit display exactly)
int outWidth = imageInfo.m_width;
int outHeight = imageInfo.m_height;
// Use fixed-point scaling (16.16) for sub-pixel accuracy
uint32_t scaleX_fp = 65536; // 1.0 in 16.16 fixed point
uint32_t scaleY_fp = 65536;
bool needsScaling = false;
if (USE_PRESCALE && (imageInfo.m_width > TARGET_MAX_WIDTH || imageInfo.m_height > TARGET_MAX_HEIGHT)) {
// Calculate scale to fit within target dimensions while maintaining aspect ratio
const float scaleToFitWidth = static_cast<float>(TARGET_MAX_WIDTH) / imageInfo.m_width;
const float scaleToFitHeight = static_cast<float>(TARGET_MAX_HEIGHT) / imageInfo.m_height;
// We scale to the smaller dimension, so we can potentially crop later.
// TODO: ideally, we already crop here.
const float scale = (scaleToFitWidth > scaleToFitHeight) ? scaleToFitWidth : scaleToFitHeight;
outWidth = static_cast<int>(imageInfo.m_width * scale);
outHeight = static_cast<int>(imageInfo.m_height * scale);
// Ensure at least 1 pixel
if (outWidth < 1) outWidth = 1;
if (outHeight < 1) outHeight = 1;
// Calculate fixed-point scale factors (source pixels per output pixel)
// scaleX_fp = (srcWidth << 16) / outWidth
scaleX_fp = (static_cast<uint32_t>(imageInfo.m_width) << 16) / outWidth;
scaleY_fp = (static_cast<uint32_t>(imageInfo.m_height) << 16) / outHeight;
needsScaling = true;
Serial.printf("[%lu] [JPG] Pre-scaling %dx%d -> %dx%d (fit to %dx%d)\n", millis(), imageInfo.m_width,
imageInfo.m_height, outWidth, outHeight, TARGET_MAX_WIDTH, TARGET_MAX_HEIGHT);
}
// Write BMP header with output dimensions
int bytesPerRow;
if (USE_8BIT_OUTPUT) {
writeBmpHeader8bit(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth + 3) / 4 * 4;
} else {
writeBmpHeader(bmpOut, outWidth, outHeight);
bytesPerRow = (outWidth * 2 + 31) / 32 * 4;
}
// Allocate row buffer
auto* rowBuffer = static_cast<uint8_t*>(malloc(bytesPerRow));
if (!rowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate row buffer\n", millis());
return false;
}
// Allocate a buffer for one MCU row worth of grayscale pixels
// This is the minimal memory needed for streaming conversion
const int mcuPixelHeight = imageInfo.m_MCUHeight;
const int mcuRowPixels = imageInfo.m_width * mcuPixelHeight;
// Validate MCU row buffer size before allocation
if (mcuRowPixels > MAX_MCU_ROW_BYTES) {
Serial.printf("[%lu] [JPG] MCU row buffer too large (%d bytes), max: %d\n", millis(), mcuRowPixels,
MAX_MCU_ROW_BYTES);
free(rowBuffer);
return false;
}
auto* mcuRowBuffer = static_cast<uint8_t*>(malloc(mcuRowPixels));
if (!mcuRowBuffer) {
Serial.printf("[%lu] [JPG] Failed to allocate MCU row buffer (%d bytes)\n", millis(), mcuRowPixels);
free(rowBuffer);
return false;
}
// Create ditherer if enabled (only for 2-bit output)
// Use OUTPUT dimensions for dithering (after prescaling)
AtkinsonDitherer* atkinsonDitherer = nullptr;
FloydSteinbergDitherer* fsDitherer = nullptr;
if (!USE_8BIT_OUTPUT) {
if (USE_ATKINSON) {
atkinsonDitherer = new AtkinsonDitherer(outWidth);
} else if (USE_FLOYD_STEINBERG) {
fsDitherer = new FloydSteinbergDitherer(outWidth);
}
}
// For scaling: accumulate source rows into scaled output rows
// We need to track which source Y maps to which output Y
// Using fixed-point: srcY_fp = outY * scaleY_fp (gives source Y in 16.16 format)
uint32_t* rowAccum = nullptr; // Accumulator for each output X (32-bit for larger sums)
uint16_t* rowCount = nullptr; // Count of source pixels accumulated per output X
int currentOutY = 0; // Current output row being accumulated
uint32_t nextOutY_srcStart = 0; // Source Y where next output row starts (16.16 fixed point)
if (needsScaling) {
rowAccum = new uint32_t[outWidth]();
rowCount = new uint16_t[outWidth]();
nextOutY_srcStart = scaleY_fp; // First boundary is at scaleY_fp (source Y for outY=1)
}
// Process MCUs row-by-row and write to BMP as we go (top-down)
const int mcuPixelWidth = imageInfo.m_MCUWidth;
for (int mcuY = 0; mcuY < imageInfo.m_MCUSPerCol; mcuY++) {
// Clear the MCU row buffer
memset(mcuRowBuffer, 0, mcuRowPixels);
// Decode one row of MCUs
for (int mcuX = 0; mcuX < imageInfo.m_MCUSPerRow; mcuX++) {
const unsigned char mcuStatus = pjpeg_decode_mcu();
if (mcuStatus != 0) {
if (mcuStatus == PJPG_NO_MORE_BLOCKS) {
Serial.printf("[%lu] [JPG] Unexpected end of blocks at MCU (%d, %d)\n", millis(), mcuX, mcuY);
} else {
Serial.printf("[%lu] [JPG] JPEG decode MCU failed at (%d, %d) with error code: %d\n", millis(), mcuX, mcuY,
mcuStatus);
}
free(mcuRowBuffer);
free(rowBuffer);
return false;
}
// picojpeg stores MCU data in 8x8 blocks
// Block layout: H2V2(16x16)=0,64,128,192 H2V1(16x8)=0,64 H1V2(8x16)=0,128
for (int blockY = 0; blockY < mcuPixelHeight; blockY++) {
for (int blockX = 0; blockX < mcuPixelWidth; blockX++) {
const int pixelX = mcuX * mcuPixelWidth + blockX;
if (pixelX >= imageInfo.m_width) continue;
// Calculate proper block offset for picojpeg buffer
const int blockCol = blockX / 8;
const int blockRow = blockY / 8;
const int localX = blockX % 8;
const int localY = blockY % 8;
const int blocksPerRow = mcuPixelWidth / 8;
const int blockIndex = blockRow * blocksPerRow + blockCol;
const int pixelOffset = blockIndex * 64 + localY * 8 + localX;
uint8_t gray;
if (imageInfo.m_comps == 1) {
gray = imageInfo.m_pMCUBufR[pixelOffset];
} else {
const uint8_t r = imageInfo.m_pMCUBufR[pixelOffset];
const uint8_t g = imageInfo.m_pMCUBufG[pixelOffset];
const uint8_t b = imageInfo.m_pMCUBufB[pixelOffset];
gray = (r * 25 + g * 50 + b * 25) / 100;
}
mcuRowBuffer[blockY * imageInfo.m_width + pixelX] = gray;
}
}
}
// Process source rows from this MCU row
const int startRow = mcuY * mcuPixelHeight;
const int endRow = (mcuY + 1) * mcuPixelHeight;
for (int y = startRow; y < endRow && y < imageInfo.m_height; y++) {
const int bufferY = y - startRow;
if (!needsScaling) {
// No scaling - direct output (1:1 mapping)
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
rowBuffer[x] = adjustPixel(gray);
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
} else {
twoBit = quantize(gray, x, y);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
} else {
// Fixed-point area averaging for exact fit scaling
// For each output pixel X, accumulate source pixels that map to it
// srcX range for outX: [outX * scaleX_fp >> 16, (outX+1) * scaleX_fp >> 16)
const uint8_t* srcRow = mcuRowBuffer + bufferY * imageInfo.m_width;
for (int outX = 0; outX < outWidth; outX++) {
// Calculate source X range for this output pixel
const int srcXStart = (static_cast<uint32_t>(outX) * scaleX_fp) >> 16;
const int srcXEnd = (static_cast<uint32_t>(outX + 1) * scaleX_fp) >> 16;
// Accumulate all source pixels in this range
int sum = 0;
int count = 0;
for (int srcX = srcXStart; srcX < srcXEnd && srcX < imageInfo.m_width; srcX++) {
sum += srcRow[srcX];
count++;
}
// Handle edge case: if no pixels in range, use nearest
if (count == 0 && srcXStart < imageInfo.m_width) {
sum = srcRow[srcXStart];
count = 1;
}
rowAccum[outX] += sum;
rowCount[outX] += count;
}
// Check if we've crossed into the next output row
// Current source Y in fixed point: y << 16
const uint32_t srcY_fp = static_cast<uint32_t>(y + 1) << 16;
// Output row when source Y crosses the boundary
if (srcY_fp >= nextOutY_srcStart && currentOutY < outHeight) {
memset(rowBuffer, 0, bytesPerRow);
if (USE_8BIT_OUTPUT) {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
rowBuffer[x] = adjustPixel(gray);
}
} else {
for (int x = 0; x < outWidth; x++) {
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
uint8_t twoBit;
if (atkinsonDitherer) {
twoBit = atkinsonDitherer->processPixel(gray, x);
} else if (fsDitherer) {
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
} else {
twoBit = quantize(gray, x, currentOutY);
}
const int byteIndex = (x * 2) / 8;
const int bitOffset = 6 - ((x * 2) % 8);
rowBuffer[byteIndex] |= (twoBit << bitOffset);
}
if (atkinsonDitherer)
atkinsonDitherer->nextRow();
else if (fsDitherer)
fsDitherer->nextRow();
}
bmpOut.write(rowBuffer, bytesPerRow);
currentOutY++;
// Reset accumulators for next output row
memset(rowAccum, 0, outWidth * sizeof(uint32_t));
memset(rowCount, 0, outWidth * sizeof(uint16_t));
// Update boundary for next output row
nextOutY_srcStart = static_cast<uint32_t>(currentOutY + 1) * scaleY_fp;
}
}
}
}
// Clean up
if (rowAccum) {
delete[] rowAccum;
}
if (rowCount) {
delete[] rowCount;
}
if (atkinsonDitherer) {
delete atkinsonDitherer;
}
if (fsDitherer) {
delete fsDitherer;
}
free(mcuRowBuffer);
free(rowBuffer);
Serial.printf("[%lu] [JPG] Successfully converted JPEG to BMP\n", millis());
return true;
}